→ Оборудование используемое для получения холода. Физические процессы и технические средства получения искусственного холода на предприятиях апк. Как кондиционеры переносят холод

Оборудование используемое для получения холода. Физические процессы и технические средства получения искусственного холода на предприятиях апк. Как кондиционеры переносят холод

Процесс понижения температуры тела называется охлаждени­ем. Различают естественное и искусственное охлаждение.

Естественное охлаждение позволяет охладить тело до темпера­туры окружающей среды. Такое охлаждение обеспечивает холод­ная вода или воздух.

Для охлаждения до температуры более низкой, чем температу­ра окружающей среды, применяется искусственное охлаждение, которое можно осуществить с помощью любого физического про­цесса, связанного с отводом теплоты.

Искусственное охлаждение используется при проведении про­цессов абсорбции, кристаллизации, разделения газов, сублима­ционной сушки и кондиционирования воздуха.

С помощью холодильных смесей можно получать довольно низ­кие температуры. Смесь льда и СаС1 2 (до 30 %) позволяет достичь температуры -55 °С. Однако для осуществления охлаждения таким способом требуется много льда и соли, поэтому его применение ограниченно.

В современных холодильных машинах используется свойство ряда низкокипящих сжиженных газов (аммиак, хладоны, диоксид уг­лерода и др.) при испарении поглощать из окружающей среды большое количество теплоты.

Искусственное охлаждение можно разделить на умеренное (до температуры -100 °С) и глубокое (до более низкой температуры).

В промышленности глубокое охлаждение применяют для сжи­жения разделяемых парогазовых и газовых смесей. Полученные таким способом газы широко используются в химической про­мышленности: азот - для получения химических удобрений, кис­лород, метан и этилен - для производства минеральных кислот и т.п.

В установках искусственного холода осуществляют необходи­мое снижение температуры рабочего тела. По агрегатному со­стоянию рабочего тела холодильные установки подразде-


ляют на газовые, газожидкостные, парожидкостные и адсорбционные (с применением твердой фазы).

Искусственное охлаждение в большинстве случаев осуществ­ляется двумя методами:

Испарением низкокипящих жидкостей;

Расширением различных предварительно сжатых газов с по­мощью дросселирования или детандирования.

При испарении низкокипящих жидкостей последние охлажда­ются за счет уменьшения внутренней энергии.

Дросселирование представляет собой процесс расширения газа при его прохождении через сужающее устройство, в результате чего давление газа снижается. Энергия, необходимая для расши­рения газа при дросселировании, когда поступление теплоты из­вне отсутствует, может быть получена только за счет внутренней энергии самого газа. Дроссельный эффект (эффект Джоуля-Том­сона) - это изменение температуры газа при дросселировании в условиях отсутствия теплообмена с окружающей средой.

Детандирование - это расширение газа в расширительной ма­шине - детандере. По своей конструкции этот агрегат аналогичен поршневому компрессору или турбокомпрессору. При детандировании газ охлаждается вследствие снижения внутренней энергии и совершения внешней работы.

Физическая природа тепла и холода одинакова, разница состоит только в скорости движения молекул и атомов. В более нагретом теле скорость движения больше, чем в менее нагретом. При подводе к телу тепла движение возрастаем, при отнятии тепла уменьшается. Таким образом, тепловая энергии есть внутренняя энергия движения молекул и атомов.

Охлаждение тела – это отвод от него тепла, сопровождаемый понижением температуры. Самый простой способ охлаждения – теплообмен между охлаждаемым телом и окружающей средой – наружным воздухом, водой, почвой. Но этим способом, даже при самом совершенном теплообмене, температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Такое охлаждение называется естественным. Охлаждение тела ниже температуры окружающей среды называется искусственным. Для него используется скрытая теплота, поглощаемая телами при изменении их агрегатного состояния.

Существует несколько способов получения искусственного холода. Самый простой из них – охлаждение при помощи льда, таяние которого сопровождается поглощением довольно большого количества тепла. Если теплопритоки извне малы, а теплопередающая поверхность льда относительно велика, то температуру в помещении можно понизить почти до 0˚С. Практически в помещении, охлаждаемом льдом, температуру воздуха удается поддерживать лишь на уровне 5 -8 ˚С.

При охлаждении водным льдом происходит изменение его агрегатного состояния – плавление. Холодопроизводительность, или охлаждающая способность чистого водного льда, называется удельной теплотой плавления. Она равна 335 кДж/кг·градус.

Водный лед применяется для охлаждения и сезонного хранения продовольственных товаров, овощей, фруктов в климатических зонах с продолжительным холодным периодом, где в естественных условиях в зимний период его легко можно заготовить.

Водный лед в качестве охлаждающего средства применяется в специальных ледниках и на ледяных складах. Ледники бывают с нижней загрузкой льда (ледник – погреб) и с боковой – карманного типа.

Ледяное охлаждение имеет существенные недостатки: температура хранения ограничена температурой таяния льда (обычно температура воздуха на ледяных складах 5-8 ºС), в ледник необходимо закладывать количество льда достаточное на весь период хранения и добавлять по мере необходимости, значительные затраты труда на заготовку и хранение водного льда; большие размеры помещения для льда, превышающие примерно в 3 раза размеры помещения для продуктов; значительные затраты труда на соблюдение необходимых требований, предъявляемых к хранению пищевых продуктов и отводу талой воды.

Льдосоляное охлаждение производится с применением дробленного водного льда и соли. Благодаря добавлению соли скорость таяния льда увеличивается, а температура таяния льда опускается ниже. Это объясняется тем, что добавление соли вызывает ослабление молекулярного сцепления и разрушения кристаллических решеток льда. Таяние льдосоляной смеси протекает с отбором тепла от окружающей среды, в результате чего окружающий воздух охлаждается и температура его понижается. С повышением содержания соли в льдосоляной смеси температура плавления ее понижается. Раствор соли с самой низкой температурой таяния называется эвтектическим, а температура ее таяния – криогидратной точкой. Криогидратная точка для льдосоляной смеси с поваренной солью (Н 2 О – NaCl) – 21,2 ºС при концентрации соли в растворе 23,1 % по отношению к общему весу смеси, что примерно равно 30 кг соли на 100 кг льда. При дальнейшем повышении концентрации соли происходит не понижение, а повышение температуры таяния льдосоляной смеси (рис. 5.1).


Рисунок 5.1 - Зависимость температуры затвердевания раствора от концентрации соли в воде.

Эвтектический раствор применяют для зероторного охлаждения. Для этого в зероторы – наглухо запаянные формы заливают эвтектический раствор поваренной соли и замораживают их. Замороженные зероторы используют для охлаждения прилавков, шкафов, охлаждаемых переносных сумок – холодильников и т.д.

Охлаждение сухим льдом основано на свойстве твердой углекислоты сублимировать, т.е. при поглощении тепла переходить из твердого состояния в газообразное, минуя жидкое состояние. Физические свойства сухого льда следующие: температура сублимации при атмосферном давлении – 78,9ºС, теплота сублимации 574,6 кДж/кг.

Сухой лед обладает следующими преимуществами по сравнению с водным:

Можно получать более низкую температуру;

Охлаждающее действие 1кг сухого льда почти в два раза больше, чем 1 кг водного льда;

При охлаждении не возникает сырости, кроме того при сублимации сухого льда образуется газообразная углекислота, которая является консервирующим средством, способствующим лучшему сохранению продуктов.

Сухой лед применяется для перевозки замороженных продуктов, охлаждения фасованного мороженого, замороженных фруктов и овощей. Получают сухой лед искусственным путем на углекислотных заводах, хранят его в специальных контейнерах с усиленной теплоизоляцией.

Получение искусственного холода с помощью льда, а также с помощью охлаждающих смесей имеет существенные недостатки: трудоемкость процессов заготовки льда, его доставки, трудность автоматического регулирования, ограниченные температурные возможности.

Термоэлектрическое охлаждение основано на эффекте Пельтье (открыт Жаном Пельтье в 1834 г.), сущность которого заключается в том, что под влиянием проходящего электрического тока по цепи из 2 разных проводников или полупроводников на спаях появляются разные температуры (рис. 5.2). Если температура холодного спая ниже температуры окружающей среды, то его можно использовать как охладитель. Значительную разность температур на спаях дают пары, составленные из полупроводников, изготовленных из соединений висмута, сурьмы, селена с добавлением небольшого количества присадок.


Рисунок 5.2 - Принципиальная схема термоэлектрического охлаждения.

Преимущество термоэлектрического охлаждения – отсутствие движущихся частей, рабочего тела, бесшумность, надежность и долговечность работы, недостаток – большой расход электроэнергии. Термоэлектрические охладительные устройства используются в некоторых типах холодильных шкафов и охлаждаемых баров.

Учитывая недостатки всех вышеизложенных способов охлаждения, наиболее распространенным и удобным в эксплуатационном отношении способом охлаждения является машинное охлаждение.

Машинное охлаждение – способ получения холода за счет изменения агрегатного состояния хладагента, кипения его при низких температурах с отводом от охлаждаемого тела или среды необходимой для этого теплоты парообразования. Для последующей конденсации паров хладагента требуется предварительное повышение их давления и температуры.

Широкое применение машинного охлаждения в торговле объясняется рядом его эксплуатационных свойств и экономических преимуществ: автоматическое поддержание постоянной температуры хранения в зависимости от вида продуктов, высокий удельный вес использования полезной емкости для охлаждения, незначительные затраты на эксплуатацию, техническое обслуживание и ремонт, удобство использования и санитарной обработки.

Комплекс механизмов и аппаратов, осуществляющих холодильный цикл, называется холодильной машиной. На предприятиях торговли используются компрессионные холодильные машины, в которых пары хладагента подвергаются сжатию в компрессоре с затратой механической энергии.

В системах КВ воздух нагревается в секциях подогрева, выполняемых в виде многоходовых калориферов из горизонтальных стальных труб, оребренных стальной лентой. Типовые секции собираются из одно- двух и трехрядных базовых теплообменников.

Для первого подогрева по ходу воздуха устанавливается обычно не менее 2-х секций. Теплоносителем может быть вода с температурой до 150 0 С и пар с давлением не более 0,6 МПа.

Если теплоноситель – вода, то для увеличения скорости ее движения в трубках теплообменников и коэффициента теплопередачи секции подогрева соединяются последовательно.

Параллельное соединение применяется только в случаях недостаточного напора в тепловой сети для преодоления увеличения гидравлических сопротивлений теплообменников, соединенных последовательно.

Если теплоноситель – пар, то секции подогрева присоединяются к пароконденсатопроводам параллельно. Максимально допустимое давление пара по условиям прочности теплообменников 0, 6 МПа.

Для секций второго подогрева местных или зональных подогревателей воздуха в качестве теплоносителя применяют воду с постоянной температурой в подающей линии (обычно 60-70 0 С). Расчетный перепад температур воды принимают 15-25 0 С.

Присоединять их к тепловым сетям непосредственно не следует, т.к. требуемая теплоотдача подогревателей, как правило, не зависит от температуры наружного воздуха, т.е. не связана с температурных графиком, по которому изменяется температура сетевой воды. Питание водой переменной температуры значительно ухудшило бы работу системы автоматического регулирования.

Теплоотдача калориферов второго подогрева регулируется автоматическим клапаном, изменяющим количество воды постоянной температуры, подаваемой в калорифер.

Для получения воды с постоянной температурой по закрытой схеме применяют смесительные установки с промежуточными теплообменниками.

33.2 Холодоснабжение кондиционеров.

Холодоносителем для СКВ, как правило, является вода, получаемая от холодильных установок, а в отдельных случаях – от естественных источников. Выбор системы холодоснабжения зависит от способа получения холодной воды, расстояния потребителей от источника холода, типа испарителя, а также от способа присоединения воздухоохладителя к холодоносителю.

33.3. Источники холода для систем кондиционирования воздуха.

При проектировании СКВ в районах с сухим и жарким климатом следует принимать прямое, косвенное или комбинированное (двухступенчатое) испарительное охлаждение воздуха, если эти способы обеспечивают заданные параметры воздуха.

В большинстве случаев для работы СКВ необходимы естественные или искусственные источники холода. К числу естественных источников относятся холодная вода из артезианских скважин или горных рек. Использование этих источников экономически целесообразно в тех случаях, когда температура воды, служащей холодоносителем, позволяет получить необходимы параметры воздуха при нагреве воды не менее, чем на 3 0 С.

В отдельных случаях для небольших систем КВ, расходующих до 180 тыс. Вт холода, можно использовать лед, заготовленный путем намораживания воды в бунтах или получаемый из водоемов. Прямой контакт межу льдом из бунтов или водоемов и воздухом, подаваемым в помещение, не допускается по санитарно-гигиеническим соображениям. Поэтому необходимо льдом охлаждать воду, циркулирующую в поверхностном водовоздушном теплообменнике.

Наиболее распространено получение холода от искусственных источников – холодильных машин. Машинное охлаждение – это способ получения холода за счет изменения агрегатного состояния холодильного агента (кипения его при низких температурах с отводом от охлаждающей среды, необходимой для этого теплоты парообразования).

Для последующей конденсации паров холодильного агента требуется предварительно повышать их давление и температуру. По способу повышения температуры паров и давления перед их конденсацией различают такие типы холодильных машин:

    компрессионные – со сжатием паров компрессором с затратой механической энергии;

    абсорбционные – с поглощение паров соответствующим абсорбентом и выделением их выпариванием раствора с затратой тепловой энергии;

    эжекторные – в которых одновременно осуществляется два цикла: прямой – с превращением подводимой тепловой энергии в механическую и обратный – с использованием механической энергии для производства холода.

Существует несколько способов получения искусственного холода. Самый простой из них – охлаждение при помощи льда или снега, таяние которых сопровождается поглощением довольно большого количества тепла – 80 ккал/кг (335 кgж/кг), при атмосферном давлении лед и снег тают при 0 о С. Практически в помещении, охлаждаемом льдом или снегом, из-за притока тепла извне температуру воздуха удается поддерживать лишь на уровне 5-8 о С.

Более низкие температуры можно получить, применяя для охлаждения смесь льда или снега с различными солями. В этом случае к скрытой теплоте, поглощаемой льдом или снегом, присоединяется скрытая теплота, поглощаемая солью при ее растворении в воде, образовавшейся в смеси; это ведет к понижению температуры смеси.

Искусственного охлаждения можно достигнуть также, если смешать лед или снег с разведенными кислотами. Например, смесь из 7 частей снега или льда и 4 частей разведенной азотной кислоты имеет температуру -35 о С.

Перечисленные выше способы получения искусственного холода имеют существенные недостатки: трудоемкость процессов заготовки льда или снега и соли, их доставки и перемешивания, трудность автоматического регулирования, ограниченные температурные возможности.

Охлаждать тела можно также сухим льдом (твердой углекислотой). Воспринимая тепло от охлаждаемого тела, сухой лед сублимирует, т.е. переходит в газообразное состояние, минуя жидкую фазу. Температура сублимации сухого льда при атмосферном давлении -78,9 о С; при этом каждый килограмм его поглощает из окружающей среды 137 ккал тепла.

Машинный способ получения искусственного холода имеет значительные преимущества: легкость автоматизации, значительное облегчение обслуживания холодильной установки, возможность получения более низких температур в охлаждаемых объектах.

Работа холодильной машины основана на различных принципах, самым распространенным из которых в настоящее время является кипение (испарение) жидких тел .

Температуры кипения и конденсации жидкости являются функцией давления; причем чем ниже давление, тем ниже температура кипения. В качестве хладоагентов часто используют вещества, которые при высоком давлении и при температуре окружающей среды могут быть превращены в жидкость. Испарение этой жидкости при низком давлении происходит при температуре ниже температуры окружающей среды.

К наиболее распространенным хладоагентам относятся аммиак, углекислота, сернистый ангидрид, пропан, фреоны.

Ниже указаны температуры кипения (испарения) при атмосферном давлении веществ, используемых в качестве хладагентов (К):

Аммиак. . . . . . . . . . . . . . . 239,9 Этилен. . . . . . . . . . . . 168,0



Углекислота. . . . . . . . . . . 194,7 Метан. . . . . . . . . . . . 111,7

Сернистый ангидрид. . . . 263,1 Кислород. . . . . . . . . 90,2

Хлористый метил. . . . . 249,5 Азот. . . . . . . . . . . . . . 77,4

Фреон-22 . . . . . . . . . . . . . 243,8

Пониженное давление, необходимое для создания низкой температуры кипения, поддерживают путем отсасывания образующихся паров компрессором. При кипении (испарении) все тела поглощают из окружающей среды значительное количество тепла, в результате чего температура в среде понижается. Изменение внутренней энергии вещества при испарении происходит в результате увеличения его объема и кинетической энергии молекул этого вещества при переходе из жидкого состояния в состояние пара.

В основу машинного способа охлаждения может быть положено также адиабатическое (без подвода и отвода тепла) расширение сжатого газа .При расширении сжатого газа температура его значительно понижается, так как внешняя работа в этом случае совершается за счет внутренней энергии газа. На этом принципе и основана работа воздушных холодильных машин, расширительных машин поршневого, турбинного или роторного типов.

Искусственное охлаждение можно получить, используя десорбцию газов из растворов или твердых тел . Многие газы хорошо растворяются в жидкостях, например аммиак в воде, углекислота в спирте. Растворимость газов в жидкостях возрастает с увеличением давления, пропорционально этому давлению.

Выделение газа из жидкости, как и испарение, сопровождается резким увеличением объема и отводом тепла растворения. Этот процесс используется в циклах вводно-аммиачных абсорбционных холодильных машин и в разомкнутых холодильных системах с использованием растворов углекислоты в этиловом спирте.

Пористые твердые тела с развитой поверхностью, называемые адсорбентами, поглощают газы. Адсорбция газов твердыми телами увеличивается с ростом давления. При снижении давления происходит десорбция газа, сопровождающаяся отводом тепла. В холодильной практике используют процесс поглощения аммиака хлористым кальцием и силикагелем.

Можно получить низкие температуры термоэлектрическим способом (эффект Пельтье) . Термоэлектрические явления обусловлены наличием связи между тепловыми и электрическими процессами. Если к термопаре (замкнутой цепи из двух разнородных проводников) подвести постоянный ток, то один из спаев будет нагреваться, другой охлаждаться. При перемене направления тока изменится и нагрев спаев – нагретый будет охлаждаться, а холодный нагреваться. Эффект Пельтье обусловлен особенностями прохождения потока электронов через поверхность спая разнородных металлов. Это явление было открыто еще в 1834 г., но практического значения долгое время не имело.

В настоящее время эффект Пельтье применяется в домашних электрохолодильниках и комнатных кондиционерах с термопарами из различных полупроводников.


В последнее время получили распространение полупроводниковые термоэлементы. На рис.2-10 показан такой элемент, включающий полупроводники 1 и 2 и медные пластины 3.

Рис. 2-31. Полупроводниковый теплоэлемент:

а – схема; б – термоэлемент; в – зависимость охлаждающего эффекта DT max от температуры горячего спая; 1, 2 – полупроводники; 3 – медные пластины

Полупроводники (окислы металлов, сернистые соединения, химические соединения – германий, кремний, теллур, селен, а также их соединения) – это обширный класс веществ, занимающих по электропроводности промежуточное положение между проводниками и изоляторами.

Магнито-калорический эффект , основанный на размагничивании твердых тел (парамагнитных веществ), используют только при необходимости получения температур, близких к абсолютному нулю.

Вихревой способ (эффект Ранка) . На рисунке 2-32 приведена конструктивная схема вихревой трубы Ранка, которая состоит из корпуса 3 с соплом 4 и диафрагмой 5 , трубок холодного 6 и теплого 2 потоков и управляющего дросселя 1 .

Рис. 2-32. Трубка Ранка

Вихревая труба работает следующим образом. Если газ с температурой Т 1 и давлением Р 1 выпустить тангенциально в цилиндрическую трубку через сопло, в котором газ расширится до давления Р 2 и разгонится до скорости W, то в этой трубке, вращаясь, поток разделится на два потока с разными температурами Т х и Т г, причем Т х Т 1 Т г. Холодный поток с температурой Т х через диафрагму 5 уходит в трубку 6 , а теплый поток с температурой Т г отводится через трубку 2 и дроссель 1 .

Статья из белорусской республиканской газеты "Звязда" в переводе на русский язык.

Представьте многоэтажку, да не просто многоэтажку, а целый небоскреб, который бы отапливался... энергией грунта (геотермальной энергией). И для этого совсем не надо "сажать" такой дом на разломе геологических плит, у жерла вулкана. Горячие батареи и теплые полы на всех этажах за счет энергии земли можно обеспечить и в наших широтах. Главное - знать, как правильно подойти к делу и какую технологию применить. Весь секрет - в тепловых трубах .

Простая физика

Все мы помним из школы о трех физических состояниях воды - твердое, жидкое и газообразное (пар). Знаем, что при нагревании жидкость становится газом, а тот, когда остывает, конденсируется в жидкость. На этом простом эффекте и основан принцип действия тепловой трубы. Внутри закрытой трубки из сверхпроводящего металла (например, меди) находится жидкость, которая легко выпаривается. Один конец трубки нагревается. Перенос тепла происходит за счет того, что жидкость выпаривается на горячем боку трубки, поглощая тепло выпаривания, и конденсируется на холодной, после чего стекает на горячую сторону.

Если трубка полая, то сконденсированная жидкость возвращается в зону испарения под воздействием силы тяжести (такая трубка будет работать только в вертикальном или близком к нему состоянии). Внутри современных тепловых трубок находится наполнитель. Такие трубки работают практически в любом положении, так как для возвращения жидкости в зону испарения используются капиллярные силы (такой же капиллярный эффект можно увидеть, если положить губку в лужу, - вода наполнит поры губки).

Основной принцип действия тепловых труб, основанный на использовании гравитации , был изобретен еще в век пара. Современные концепции, которые базируются на использовании капиллярного эффекта, были предложены Р. С. Гауглером из General Motors в 1942 году. Позже он запатентовал эту идею. Независимо от него преимущества капиллярных систем были продемонстрированы Джорджем Гровером из Los Alamos National Laboratory в 1963-м.

Сегодня над совершенствованием тепловых труб работают ученые всего мира. Круг применения этой технологии исключительно широкий - от космических аппаратов до холодильников. Свой значительный вклад в развитие этого научного направления внесли и белорусы. Про наиболее интересные и перспективные отечественные разработки наш корреспондент побеседовал с основателем научной школы в области тепловых труб в нашей стране, заведующим лабораторией пористых сред Института тепло- и массообмена имени Лыкова НАН Беларуси, лауреатом Госпремии и премии Совета Министров СССР, президентом ассоциации стран СНГ "Тепловые трубы", владельцем престижной международной награды - золотой медали Гровера - профессором Леонардом Васильевым .

Система термобезопасности

Если говорить упрощенно, тепловая труба - это аналог сверхпроводника электричества , по которому электроэнергия передается без потерь на расстояние, - пояснил Леонард Леонидович. - Здесь мы имеем дело с тепловым сверхпроводником, который без потерь передает на расстояние (причем довольно значительное - в сотни метров) тепловую энергию.

Сейчас в мире активно разрабатываются проекты с применением тепловых труб, которые позволяют эффективно использовать энергию альтернативных и возобновляемых источников энергии , в частности, грунта. Уже осуществляются конкретные работы по передаче тепловой энергии из глубин земли на поверхность для того, чтобы обогревать многоэтажные здания за счет геотермальной энергии .

В общем, с помощью тепловых труб мы можем охлаждать, нагревать и регулировать температуру в пределах необходимой. И все это может осуществляться в самом широком температурном диапазоне. Такие сверхпроводники тепла могут использоваться как при температурах, близких к абсолютному нулю (в таких тепловых трубках применяются сверхтекучий гелий, жидкий водород), так и при высоких температурах (тогда наполнителями становятся щелочные металлы - натрий, калий). Температурный диапазон составляет 1000 градусов.

Наиболее дешевый и доступный наполнитель - вода . Именно она применяется во всех теплообменных устройствах, используемых для нашего комфорта (например, в системах отопления помещений), в технологических процессах (таких как сушка, термообработка пищевых продуктов) и т.д.

По словам ученого, тепловые трубы абсолютно вне конкуренции, когда речь идет об охлаждении электроники, в первую очередь компьютеров: подавляющее большинство ПК имеет систему охлаждения на тепловых трубах. То же касается и космических аппаратов: практически все искусственные спутники Земли имеют систему теплорегулирования на тепловых трубах.

Электроника не любит высоких температур, - рассказал профессор. - Допустим диапазон нагрева электронных приборов составляет 100-120 градусов, поэтому очень важно гарантировать отсутствие перегрева и выхода электроники из строя. Что и делают тепловые трубы, создавая своеобразную "систему термобезопасности".

Для большей наглядности Леонард Леонидович демонстрирует различные образцы тепловых труб. Вот алюминиевая труба для космических аппаратов, которая охлаждает электронику. На одном ее конце крепится электроника, а второй контактирует с радиатором, через который излишки тепловой энергии "выбрасываются" в космос. Изнутри труба имеет капиллярную структуру - бороздки, которые заполняются жидким аммиаком или пропиленом. А вот тепловая труба для использования в компьютере - гораздо меньших размеров, медная, с никелевым напылением. В общем, по конструкции тепловые трубы могут быть самыми разными. Сегодня существует несколько десятков вариантов.

"Ледяные дороги" и не только

За годы работы сотрудники лаборатории пористых сред под руководством профессора Васильева разработали и внедрили в народное хозяйство десятки новых конструкций тепловых труб, испарителей, конденсаторов и устройств для их применения, основными из которых можно назвать тепловые трубы для нагрева, охлаждения и терморегулирования радиоэлектронной аппаратуры, литейных форм, аккумуляторов электричества, шахтных, защищенных от взрыва трансформаторов; термопластификаторов деталей машин и медицинских вращающихся приборов; тепловые трубы для работы в зоне вечной мерзлоты, в теплицах при намерзании ледяных опор в шахтах и т.д. Получили около 300 авторских свидетельств СССР на изобретения, 12 зарубежных патентов, 6 патентов Республики Беларусь.

Леонард Леонидович листает большой фотоальбом, где размещены фотографии разработок лаборатории за разные годы. Вот, например, удивительное фото: длинные тепловые трубы, наполовину закопанные в болото. Вокруг - пустота. Зачем они там? Оказалось, это "ледяные дороги " (тепловые трубы, которые использовались в Сибири для замораживания болот, чтобы по ним можно было проехать тягачам; зимой трубы отводили тепло грунта, и болото замерзало).

Вот еще одно интересное применение тепловых труб - на железнодорожных "стрелках" . Зимой на стрелочных переводах может появиться наледь, образуется риск плохого смыкания, что может обернуться аварией. А если под стрелку подвести тепловую трубу в несколько метров и закопать ее в землю, то благодаря теплу земли можно обеспечить подогрев стрелки и избежать обледенения. Обходчику не нужно раз за разом долбить лед. Просто и эффективно.

Активные и пассивные

В последнее время в научном мире много разговоров ведется про нанотехнологии. В частности, об использовании в тепловых трубах наножидкостей (жидкостей с исключительно малыми размерами частиц), - рассказывает заведующий лабораторией. - В тепловой трубе каким-то образом нужно создать капиллярную структуру. Если мы применим наножидкость, то сможем создать наиболее оптимальный пористый рельеф на внутренней поверхности трубы. Тогда тепловой обмен будет максимально эффективным.

Это очень полезно для медицины: с помощью микрошунтов можно будет понижать или повышать температуру человеческого тела, проводить бескровные операции, воздействовать на энергоактивные точки тела (локально нагревать или охлаждать).

Замечу, что мы только приходим к использованию искусственно созданных микротепловых труб, а в природе они существуют в естественном состоянии (система терморегулирования скота и человека осуществляется по принципу микротепловых труб).

Еще одно интересное направление, которое вспомнил профессор, - сорбционные тепловые трубы , где помимо обычного капиллярного фитиля есть еще и сорбент - пористое вещество, позволяющее связывать молекулы пара в твердом состоянии. В такой трубе работает несколько сил: капиллярные и сорбционные, соответственно получается двойной тепловой эффект .

Можно передавать вдвое большую энергию, чем в обычных тепловых трубах , - добавил Леонард Васильев. - Кроме того, это уже тепловые трубы активного терморегулирования , в отличие от обычных - с пассивным терморегулированием . Появляется возможность активно использовать тепло для получения холода (например, в космических аппаратах).

Короче говоря, разработок много. Дело - за внедрением. Нужны инвестиции, которые бы дали возможность внедрять на наших предприятиях новые технологии и оборудование. А научный потенциал у нас, слава Богу, есть.

Инга Миндалёва. Газета «Звязда», 28 января 2012 года.
Оригинал на белорусском языке: zvyazda.minsk.by/ru/archive/article.php?id=92453&idate=2012-01-28

 

 

Это интересно: