→ Спиральные тв антенны. Спиральные антенны: виды и фото. Размеры и сборка

Спиральные тв антенны. Спиральные антенны: виды и фото. Размеры и сборка

Супер простую и супер быструю в изготовлении антенну из коаксиального кабеля для приема каналов цифрового телевидения можно сделать своими руками минут за 5. Для этого вам не потребуется абсолютно ничего, кроме самого кабеля. И это главнейший плюс этой антенны.
Без телевизора сейчас никуда.

Эта конструкция вас обязательно выручит, к примеру, когда вы только-только въехали в жилище и ещё успели ни протянуть кабель, ни поставить стационарную антенну. Конечно это не единственный пример где поможет эта по истине простая петлевая антенна.
Сейчас в комментариях кто-нибудь обязательно напишет, что есть антенны ещё проще, типа штыревой. Для изготовления которой будет достаточно просто снять две изоляции с кабеля и всё будет работать. Я конечно с этим соглашусь, но петлевая антенна, которую сделаю я из коаксиального кабеля будет иметь гораздо большее усиление, ввиду своей направленности и резонансно-замкнутого контура.

Изготовление антенны из коаксиального кабеля

Так выглядит вариант сделанный из черного кабеля.


А теперь изготовление антенны по порядку. Все что нам понадобится это менее полуметра коаксиального кабеля любого цвета. Я взял белый.


От края кабеля отступаем 5 см и снимаем верхнюю изоляцию.


Далее снимаем изоляцию с центральной жилы.


Теперь все вместе аккуратно и плотно скручиваем.


Затем, от края со снятой изоляцией отступаем 22 см и вырезаем кусочек 2 см верхней изоляции и экранированной проволоки с фальной, не трогая при этом изоляцию центральной жилы.


Теперь от конца разреза отмеряем ещё 22 см и делаем прорез шириной 1 см только со снятием верхней изоляции. Экран кабеля не трогаем.


Далее берем конец кабеля, с которого начинали. И очень плотно приматываем его у последнему разрезу, формируя круг антенны.



На этом наша антенна готова к работе. Конечно это не обязательно, но если вешать антенну на улицу, то лучше изолентой заизолировать все оголенные места кабеля. Так же можно добавить жесткий каркас, но это по желанию.

Расположение антенны

Антенну направляем на ретранслятор или телевизионную вышку. Направление можно выбрать и опытным путем, вращая антенну.
Лучшем вариантом будет если разместить ее за окном, так как стены дома очень сильно глушат высокочастотный сигнал.

Проверка показала отличный результат работы

Если вам все же не понятно, как сделать антенну из кабеля, то посмотрите обязательно видео ниже или задайте вопросы в комментариях.

3.1. В процес­се развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне ча­стот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамиче­ского подобия.

Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение дли­ны волны сопровождается прямо пропорциональным изменением ли­нейных размеров активной области антенны. При соблюдении данного условия антенна может быть ча­стотно-независимой в неограничен­ном диапазоне волн. Однако разме­ры излучающей структуры конеч­ны и рабочий диапазон волн лю­бой антенны тоже ограничен.

Из этой группы антенн рассмот­рим плоские арифметические и равноугольные спирали и логариф­мически-периодические антенны.

Рис.4.

3.2. Арифметическая спираль вы­полняется в виде плоских металли­ческих лент или щелей в металли­ческом экране (рис. 4). Уравне­ние этой спирали в полярных координатах

где - радиус-вектор, отсчитываемый от полюса О; а - коэффициент, характеризующий приращение радиус-вектора на каждую единицу приращения полярного угла; b - начальное значение радиус- вектора.

Спираль может быть двухзаходной, четырёхзаходной и т. д. Если спираль двухзаходная, то для ленты (щели) /, показанной штриховы­ми линиями, угол отсчитывается от нуля, а для ленты //, показанной сплошными линиями, - от 180°, т. е. спираль образована совершенно идентичными лентами, повернутыми на 180° друг относительно друга.

Начальные точки ленты / соответствуют радиус-векторам, которые обозначим и. Следовательно, ширина ленты. Описав один оборот, лента занимает поло­жение D, в котором радиус-вектор больше начального на. На этом отрезке ВD размещаются две ленты и два зазора, и если ширина их одинаковая, то, Отсюда определяем коэффициент.

3.3. Питание спирали может быть противофазным, как на рис. 4, или синфазным. В первом случае токи через зажимы А, В, соединяю­щие ленты с фидером, имеют противоположные фазы. Путь тока в лен­те / больше, чем в ленте //, на полвитка. Например, в сечении СD лента // попадает, описав полвитка, а лента / - один виток, в сечение ЕF-соответственно полтора и два витка и т. д. Поскольку длина витка по мере развертывания спирали возрастает, увеличивается рас­хождение фазы токов в лентах. Обозначив средний диаметр витка находим сдвиг по фазе, соответствующий длине полувитка:

Если к этому прибавить начальный сдвиг, равный, то получим результирующее расхождение по фазе токов в смежных элементах двухпроводной линии

За счет второго слагаемого угол отличен от, а в таких условиях электромагнитные волны излучаются, даже если зазор между лентами мал по сравнению с длиной волны.

Интенсивно излучает только та часть спирали, в которой токи смеж­ных элементов обеих лент совпадают по фазе:

Подставляя, находим, что средний диаметр первого «резонанс­ного» кольца, а периметр этого кольца.Сред­ний диаметр и периметр второго (k=2 ), третьего (k=3 ) и т. д. «ре­зонансных» колец соответственно в три, пять, ... раз больше. Так как излучение радиоволн спиралью вызывает большое затухание тока от ее начала к концу, то интенсивно излучает только первое резонансное кольцо , а остальная, внешняя часть спирали как бы «отсекается» {явление отсечки излучающих токов}.

3.4. Активная часть спирали представляет наибольший интерес и по другой причине. Затухание тока, вызванное излучением, настолько велико, что отражение от конца спирали практически отсутствует, т. е. ток в спирали распределяется по закону бегущих волн. К тому же пе­риметр первого резонансного кольца равен длине волны. В таких условиях, как показано в п. 1, происходит осевое излучение с вращаю­щейся поляризацией, которое в данном случае наиболее желательно.

Диаметр спирали должен быть достаточно велик, чтобы на макси­мальной волне диапазона сохранилось первое «резонансное» кольцо (),а с уменьшением длины волны это кольцо долж­но сжиматься до тех пор () , пока оно еще может полностью разме­ститься вокруг узла питания. Тогда в пределах отноше­ние среднего периметра первого «резонансного» кольца к длине волны остается постоянным и тем самым выполняется основное условие сохранения направленных свойств антенны в широком диапазоне волн Правда, направленность арифметической спирали невелика (60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний пери­метр, равный.

Второе условие получения диапазонной антенны-постоянство входного сопротивления - достигается здесь тем, что спираль ра­ботает в режиме бегущей волны тока. Это сопротивление активное (100-200 Ом). При питании от коаксиального фидера (Ом) согласование производят ступенчатым или плавным трансформатором.

3.5. Спираль излучает по обе стороны своей оси. Чтобы сделать ан­тенну однонаправленной, ленточную спираль помещают на диэлектри­ческой пластине толщиной, другую сторону которой металлизи­руют. Если же спираль щелевая, то ее вырезают на стенке металличе­ского короба; тогда противоположная стенка короба играет роль отра­жающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пла­стине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн 7.5 ... 15 см при, ширине диаграммы направлен­ности 2" = 60... 80° и коэффициенте эллиптично­сти в направлении макси­мума главного лепестка менее 3 дБ, т. е. практиче­ски поляризацию можно считать круговой. Плоские спиральные антенны удоб­но изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

Использование: в антенной технике. Сущность изобретения: даны соотношения для определения диаметра проводника токопроводящей однозаходной цилиндрической спирали, числа ее витков, угла намотки и длины витка. 1 з. п. ф-лы, 3 ил. 1 табл.

Изобретение относится к антенной технике, а конкретно, к цилиндрическим спиральным многовитковым антеннам с эллиптической и круговой поляризацией излучения и может быть использовано в системах космической связи метрового, дециметрового и сантиметрового диапазонов длин волн, в частности, в отражателях зеркальных радиотелескопов, в фазированных антенных решетках и т.п. Современный уровень техники в данной области характеризуется широким использованием цилиндрических спиральных антенн осевого излучения. Классическим техническим решением в данной области является цилиндрическая спиральная антенна осевого излучения, состоящая из активной цилиндрической спирали, расположенной над металлическим экраном (см. Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и излучающих элементов. Под ред. профессора Д. И.Воскресенского. М. Советское радио, 1972, с.241, рис. 9.5б). В такой антенне преобладает волна тока типа Т 1 , фазовая скорость которой меньше скорости света. В указанной антенне диаметр диска экрана принимают равным (0,9-11), а диаметр провода спирали (0,03-0,05) ср, где ср средняя длина волны заданного диапазона (см. упомянутый источник, с.256). Ширина диаграммы направленности антенны в силу указанных конструктивных особенностей и особенности распространения бегущей волны тока, рассчитанная по уровню половинной мощности (см. там же, с.248) обычно не превышает 60 о, что сужает область качественного приема-передачи сигналов, например, облучателей зеркальных антенн. Известные цилиндрические спиральные антенны, как правило, рассчитываются с учетом вышеприведенных рекомендаций, что накладывает указанные ограничения. Так известна спиральная антенна, содержащая однозаходную цилиндрическую спираль, установленную над металлическим экраном, коаксиальный волновод, внешний проводник которого соединен с экраном, а внутренний с началом однозаходной цилиндрической спирали (см. а.с. СССР N 1246196, кл. H 01 Q 11/88, опублик. 23.07.86). Имеющаяся в известной антенне опорная диэлектрическая труба с изменяющейся толщиной замедляет и уменьшает интенсивности бегущих волн тока, препятствуя тем самым увеличению ширины диаграммы направленности. А предлагаемый выбор традиционных соотношений для расчета конструкции, в частности, диаметра проводника спирали, не обеспечивают возможности существенного увеличения ширины диаграммы направленности. В известной спиральной антенне, содержащей активную спираль, соединенную с фидером и расположенную над металлическим экраном (см. а.с. СССР N 1626294, кл. H 01 Q 3/24, опублик. 7.02.92), возможно незначительное изменение, в том числе и увеличение, ширины диаграммы направленности (ДН) антенны за счет нагрева активного диэлектрика и изменения его диэлектрической проницаемости. Однако использование нагревающей диэлектрик токами низкой частоты спирали с одной стороны усложняет конструкцию антенны, а с другой приводит к искажению ДН, увеличению уровня боковых лепестков. Возможности расширения ДН при этом незначительны, поскольку выбор конструктивных элементов основан на традиционных подходах, а изменение диэлектрической проницаемости не может быть осуществлено в широких пределах, причем данный параметр не является определяющим для конструкции и ее характеристик, в частности, ширины ДН. Известно, что ширина ДН по уровню половинной мощности при фиксированной длине волны определяется в основном длиной витка спирали и шагом цилиндрической спирали (см. например, упомянутую книгу под ред. Д.И.Воскресенского, с. 248). Влияние других конструктивных параметров цилиндрической спирали, в частности, толщины проводника слабо исследовано. Предполагается, что проводник должен быть достаточно тонким, чтобы не учитывалось влияние его толщины на расчетные соотношения, и в то же время проводник должен быть жестким и прочным, чтобы не нарушать целостность конструкции, сохранять ее форму и прочность. Так в статье К. К. С.Джемвала и других "Анализ конструкции спиральных антенн с оптимизированным усилением для полосы частот в Х-диапазоне" рекомендуется диаметр проводника спирали выбирать равным 0,017), где -длина волны (см. K.K.S.Jamwal and Renu Vakil. Design analysis of gain-optimizedhelix antennas for X-band freguencies. // Microwave Jornal, 1985, september, р. 177-183). Для многовитковых спиральных цилиндрических антенн дециметрового диапазона минимальный диаметр проводника в долях длины волны может быть выбран 0,005 . Цилиндрическая спиральная антенна, в которой используется проводник указанной толщины, выполнена в виде цилиндрической спирали, подключенной к питающему фидеру и размещенной над отражающим экраном. Минимальный рекомендуемый диаметр проводника спирали является решающим признаком при выборе указанной цилиндрической спиральной антенны в качестве прототипа. Известная цилиндрическая спиральная антенна является многовитковой с числом витков N больше 6 (6N15), и углом намотки (подъема витка) , изменяющемся в пределах 12 о 15 о, при длине витка, близкой к и является антенной осевого излучения. Проведенный в статье анализ известной антенны свидетельствует о том, что ширина ее ДН не превышает 60 о. При этом форма диаграммы направленности существенно отличается от секторного типа, близкого по виду к диаграмме направленности изотропного излучателя, что в ряде случаев предпочтительней в технике связи. Данным техническим решением впервые решена и поставлена задача создания цилиндрической спиральной антенны осевого излучения с круговой и эллиптической поляризацией излучения за счет использования сверхтонких проводников в цилиндрической спирали. Основной технический результат достигаемый от использования предлагаемого решения заключается в увеличении ширины ДН антенны по уровню половинной мощности. Дополнительный технический результат предлагаемой антенны заключается в получении ДН секторного вида, т.е. близкой по форме переднего фронта к диаграмме направленности изотропного излучателя. Достижение основного технического результата обеспечивается тем, что цилиндрическая спиральная антенна, содержащая токопроводящую однозаходную цилиндрическую спираль, соединенную с питающим фидером и расположенную над отражающим экраном, имеет максимальный поперечный диаметр проводника d спирали, удовлетворяющий соотношению110 -7 d110 -4 ,где - длина волны. Достижение дополнительного технического результата обеспечивается тем, что цилиндрическая спиральная антенна имеет следующие параметры: 3N8,13 o 14,5 o ,0,95L 1,1, 110 -6 d110 -5 где d, N, , L соответственно диаметр проводника, число витков, угол намотки, длина витков цилиндрической спирали, а длина волны. В предлагаемой цилиндрической спиральной антенне реализован режим осевого излучения с эллиптической поляризацией излучения при достижении максимально широкой диаграммы направленности. Впервые теоретически и экспериментально установлено, что использование сверхтонких проводников цилиндрической спирали позволяет существенно увеличить ширину ДН по половинной мощности в диапазоне длин волн от метрового до сантиметрового включительно. Установлено, что для многовитковых цилиндрических спиралей с числом витков не менее 3, рассчитанных для длины волны тока типа Т 1 использование сверхтонких проводников с диаметром 110 -4 и менее приводит к расширению ДН антенны. Причем для диапазона 3N15,12 o 15 o ДН сохраняет осевой вид без существенных искажений формы. Для крайних значений N(N 1 =3,N к =15),( 1 =12 o , к =15 о) и L 1 ширина ДН по сравнению с прототипом увеличивается на 25-40% а изменение при этом L от 0,7 до 1,4 изменяет ширину ДН на 10-12% Приводимая таблица иллюстрирует изменение ширины ДН цилиндрической антенны по уровню половинной мощности 2 0,5 для N 38, d=1314,5 o ; L (0,951,1) от диаметра d проводника цилиндрической спирали, выраженного в долях длины волны, при этом коэффициент эллиптичности излучения не менее 0,5. На фиг.1 схематически изображена предлагаемая цилиндрическая спиральная антенна; на фиг. 2 диаграмма направленности антенны в сферической системе координат (кривая 1) при N 6, = 14 о, L=1,d=110 -5 на фиг.3 зависимость коэффициента эллиптичности от угла наблюдения (кривая 2) в декартовой системе координат для антенны с указанными на фиг.2 параметрами. Следует иметь в виду, что сектораня форма диаграммы направленности, изображенная на фиг. 2 сохраняется для параметров N,, L, d, приведенных в таблице в диапазоне диаметров d=(110 -5 110 -6) При других значениях d происходит искривление фронта ДН и вытягивание его вдоль оси. Предлагаемая цилиндрическая спиральная антенна (см. фиг.1) содержит однозаходную цилиндрическую спираль 1 из металлического проводника диаметром d= (110 -4 -110 -7), соединенную с центральным проводником питающего фидера 2, металлический экран 3, гальванически связанный с обмоткой фидера. Проводник с целью сохранения жесткости конструкции приклеен к диэлектрическому цилиндрическому радиопрозрачному каркасу (не показан). Предлагаемая антенна работает следующим образом. В запитываемой через фидер 2 цилиндрической спирали возбуждается бегущая волна тока типа Т 1 спадающей амплитуды. Амплитуда бегущей волны тока до конца второго витка равномерно уменьшается примерно в 2,5 раза, а области от конца второго витка до 0,5 от конца спирали уменьшается примерно в 3 раза. На расстоянии 0,5 от конца спирали возникает стоячая волна, амплитуда которой не превосходит амплитуду тока на конце второго витка. При этом вдоль всего проводника цилиндрической спирали от точки возбуждения до 0,5 от свободного конца волна тока распространяется с фазовой скоростью, почти равной скорости света. Бегущая волна тока и стоячая волна тока излучают электромагнитные волны, которые, складываясь в дальней зоне, формируют диаграмму направленности антенны. Благодаря спадающему характеру и распространению бегущей волны тока со скоростью света происходит формирование более широкой ДН, в частности ДН секторного вида. Согласно известным условиям Хансена-Вудъярда (см. например, Уолтер К. Х. Антенны бегущей волны. Под ред. А.Ф.Чаплина, М. Энергия, 1970, с.448) для формирования остронаправленного излучения необходимо, чтобы в антенне бегущей волны существовала замедленная волна, т.е. присутствовал набег фаз. А в предлагаемом случае это условие не выполняется, поскольку в ЦС вдоль сверхтонкого проводника распространяется волна с фазовой скоростью, почти равной скорости света. Это и приводит при определенном соотношении параметров антенны к формированию ДН в виде сектора с почти равномерным излучением. Экспериментально предлагаемая цилиндрическая спиральная антенна проверена для ср 1,5 м. Величина металлического экрана при этом составляла 1,1 ср. Широкополосность полученной антенны 10%

Этот тип антенн хорошо подходит для дальнего приёма эфирного телевизионного цифрового сигнала. Подкупает простота изделия, всего две основные детали: отражатель из снегоуборочной лопаты и спираль из мотка силового провода. Ни одного паяного соединения, всё на винтах и скрутке. Нет сложных согласующих элементов. Тем не менее, коэффициент усиления конструкции достигает более 10 дБ, что позволяет использовать её в некоторых случаях без усилителя. Именно на эту антенну без усилителя я принял за городом цифровой телевизионный сигнал.


Хочу напомнить, что любая дециметровая антенна годится для цифрового канала вещания, разница будет только в дальности приёма. Но не всякая антенна обеспечит максимальный коэффициент усиления и согласования именно на нужной частоте. Какая бы сложная антенна не была, она имеет провалы и пики усиления во всём своём диапазоне принимаемых частот.

Именно спиральные антенны следили за полётом первого космонавта Юрия Гагарина.Когда первые советские луноходы, ориентируя спирали, бороздили поверхность Луны, я мечтал сделать такую же космическую антенну.


Фото 2.

Нет ничего хуже незавершенных дел. За основу выбираю самую простую из всех типов спиральных антенн. Это однозаходная, спиральная, цилиндрическая (бывает ещё коническая), регулярная, то есть с постоянным шагом намотки или одинаковым расстоянием между витками. Таким образом, уже название антенны говорит о её конструкции. Именно такую конструкцию впервые предложилKraus J .D .

«Helical beam antenna ». – «Electronics », 1947 год. V 20, N 4. Р. 109.

Рекомендую для радиолюбителей лучшую настольную книгу «Антенны», издание 11, том 2. Автор Карл Ротхаммель. В книге собрано много практического материала почти всем видам антенн. Характеристики, параметры, практические расчёты, рекомендации.

Из этого издания я привожу характеристики спиральной антенны.


Рис. 1.

Необходимо узнать на какой частоте в вашем регионе идёт цифровое вещание и значение этой частоты перевести в метры. Длина волны в метрах = 300 / F (частота в МГц).

Для московских частот вещания двух цифровых пакетов, я выбрал среднюю частоту 522 МГц, что соответствует длине волны лямбда 57 см. В этом случае диаметр витка равен D = 17,7 см, расстояние между витками 13,7 см, расстояние от экрана до витка 7,4 см, а ширина экрана должна уложиться в 35 см.

В качестве экрана (отражателя) мне потребовалась неправильная снегоуборочная лопата из красивой блестящей нержавейки, постоянно гнущейся под тяжестью снега. Практика показывает, что отражатель не обязательно должен быть круглым, а делать сторону квадрата более двух диаметров витка спирали нет смысла.Спираль я сделал из сетевого силового провода диаметром около 2 мм, используя одну изего жил, не снимая с неё изоляцию, так как она прозрачна для радиоволн, а медная проволока не окисляется в ней под воздействием внешней среды. На практике толщина провода оказалась почти в 5 раз меньше теоретической, вот почему диапазон антенны получился узким. В дециметровом диапазоне антенна примет хорошо только несколько телевизионных станций аналогового вещания, тем не менее, два цифровых пакета, распложённых рядом по частоте вполне уместятся в полосе её усиления. Ещё потребуется 75-Омный коаксиальный кабель с разъёмом. Не рекомендую сильно увлекаться длиной кабеля, особенно если антенна без усилителя, так как в его каждом метре теряется от 0,5 до 1 дБ усиления и длинному кабелю потребуется согласующее устройство. В своей конструкции я использовал 3-и метра кабеля.


Рис. 2.

Всего-то дел, намотать спираль, подсоединить к проводнику спирали кабель и прикрепить всё это к полотну лопаты. Но диэлектрического цилиндра нужного диаметра для фиксации провода спирали у меня не оказалось, и поэтому в качестве каркаса я использовал рейки и лист сухой фанеры, перенеся на неё размеры антенны с эскиза. Было бы круче, если бы использовались черенки от лопат вместо реек и фанеры, но я собирал только макет, и мне было удобно сделать всё на фанере. Когда обечайка стала обволакиваться проводом, самоделка была похожа на корпус летательного аппарата. Со стороны это выглядело менее безобидно, если бы я стал гнуть витки из медной трубки, как хотел раньше. Как я уже говорил, такую антенну удобно спрятать под конёк дома с крышей из мягкой кровли, андулина или шифера, прозрачной для радиоволн.


Фото 3. Испытание макета антенны.

Для проверки антенны я использовал комнату мансарды, где с помощью лестницы приподнял самоделку поближе к потолку. В этом месте раньше работала Место испытание тоже. Владимирская область, 90 км на восток от Останкино. Теперь здесь работает спиральная антенна без усилителя. Она «видит» телецентр через: вагонку, пергамин, 10 см базальтовой ваты, доску обрешётки, фанеру OSB , подстилочный ковёр, чешую мягкой кровли и сгусток гвоздей разной длины.Остаётся закрепить её ещё выше, под конёк дома или разобрать, ведь это всего только макет.


Фото 5. Размер и шаг предыдущих
конструкций антенн почти совпадают.

Для улучшения параметров антенны не помешает применить согласующее устройство – трансформатор, обеспечивающий переход с сопротивления антенны равного 180 Ом на коаксиальный кабель с сопротивлением 75 Ом. Это пластинка из тонкой меди в виде треугольника, расширяющегося к экрану. Место крепления пластинки и её размеры я подобрал экспериментальным путём, применив две пластмассовые прищепки. В домашних условиях это легко сделать с помощью телевизора, спустив антенну на более низкий уровень, при котором изображение будет «заснеженным». Необходимо двигать, поворачивая пластинку, и на слух, по уменьшению уровня шума в аудио канале при приёме аналогового сигнала, близкого по частоте к цифровому пакету, определить её местоположение. После чего запаять.

Несмотря на нелепость формы у этой антенны есть преимущество. Она без усилителя, который после разрядов молний часто вылетает. На практике два раза усилители выходили из строя во время грозы у наружных антенн, расположенных в 30-и метрах от столба воздушной электропроводки, в который попадали молнии. У антенны расположенной под крышей дома, в шести метрах от столба-разрядника, случаи выхода усилителя из строя не зарегистрированы.

Может выйти из строя блок питания самого усилителя, так как он, как правило, всегда под напряжением и ресурс его ограничен.

Ещё одно преимущество в том, что дальность этой антенны с усилителем будет больше, на сколько, проверьте сами.

Дополнение. Изменение конструкции антенны.

В этом году (2015) я решил доработать самодельную конструкцию спиральной антенны, используя вместо провода металлопластиковую трубку (металлопласт) диаметром 16 мм. Ранее собранные антенны уже прошли аналогичную операцию и заметно оживились. Претерпела оздоровление и спиральная антенна, но не обольщайтесь, прирост уровня сигнала составил только 10 процентов, а качество сигнала осталось на том же стопроцентном уровне.

Фото 7. Старая антенна.
Фото 8. Изменение конструкции.

Давно хотел сделать антенну, используя в качестве материала трубку. Останавливала схожесть с самогонным аппаратом и высокая себестоимость. Но вот материал найден и уже испытан на простых антеннах. Это легко гнущаяся трубка из высококачественного алюминия, обтянутого со всех сторон пластиком, продаётся на всех строительных рынках для прокладки водопровода.

Фото 10. Новая конструкция.
Фото 9. Банка - оправка.

Экономический

расчёт антенны.

Этот сложный расчёт мне пришлось проделать, зайдя в магазин «Всё для дома», на самой окраине Подмосковья и увидев металлопласт по цене 45 руб. Длина волны, частоты вещания, длина круга, число витков, усиление антенны….

4 метра выпалил я на кассе, подведя итог экономической части проекта. Себестоимость антенны не должна превысить минимальную акцизную стоимость бутылки водки.

Расчёт антенны.

Чисто по экономическим соображениям получилось 6,5 витков, на полвитка меньше предыдущей проволочной самоделки. Так же между витками я взял расстояние равное четвёртой части длины волны. Аналогичным образом подсчитал длину одного витка, но по практическим соображениям, уже имея опыт по изготовлению простых петлевых антенн, скорректировал зависимость металлопласта от частоты, сократил длину витка на 1,5 см. Так же подсчитал диаметр оправки, поделив скорректированную длину витка на 3,14. С учётом толщины трубки диаметр оправки взял на 8 мм меньше.

Регулировка.

Она заключалась в измерении КСВ (коэффициента стоячей волны) . Первоначально я измерил старую самоделку. Странно, но прибор заявлял об отличном согласовании с 50 Ом нагрузкой (КСВ = 1,5). С доработанной антенной тоже всё совпало, правда, при запитке с края полотна. Но конструктивно, уже впоследствии, я задействовал кабель по центру и КСВ упал до 2. Очень полезным оказался простенький самодельный КСВ-метр, совмещённый с самодельным генератором, настроенным на цифровые частоты вещания. С его помощью я смог не только определить КСВ антенны, но и проверить её работоспособность, когда каждый виток реагировал на подносимую крышку от кастрюльки качанием стрелки микроамперметра.

Итоги.

Изменение конструкции добавило прирост усиления на 10 процентов, и это при том, что в антенне на пол витка меньше. В целом она принимает программы в дециметровом диапазоне, работая в аналоговом режиме, не хуже антенны типа «волновой канал» (Уда – Яги), включающей в себя 12 директоров и усилитель с заявленным усилением не менее 26 дБ. Обе антенны расположены в одинаковых условиях на одном уровне от земли. Разница лишь в том, что работа покупной антенны, при приёме эфирного цифрового сигнала, зависит от погоды и времени дня, симулируя ухудшение прохождения радиоволн характерным крякающим звуком и зависанием телевизионных картинок, а то и полным отсутствием изображения. Радиоприём с самодельной антенной всегда постоянен.

Но в целом я остался недоволен данной конструкцией, поскольку ожидал от неё нечто большего, исключительно исходя из её габаритов и затраченных средств. Сравнивая эту спиральную антенну с предыдущей конструкцией , состоящую всего из двух фазируемых колец идентичного диаметра, сделанную из того же материала, я не нашёл существенного выигрыша, сравнивая их по уровням приёма.

Два фазированных кольца и шесть закрученных в спираль, дают усиление в теории 6 дБ и 10 дБ. Два кольца на открытом воздухе и 6,5 колец под крышей, на одинаковом уровне от земли и при практическом одинаковом уровне усиления в процентах. Может крыша и съела разницу в 4 дБ, а может реально трудно заметить эту разницу? В тоже время не выставлять же этот змеевик на улицу, открывая этим тему для лишних разговоров.

Упал ли я духом? Нет! Радиолюбительство - источник удовольствия. Займитесь радиолюбительством, ведь это интересно. Возможно, результат у вас будет лучшим.


Скорее всего, я ещё вернусь к этой спиральной антенне, ведь не заснула же она, кода антенна «волновой канал» перестала принимать эфир.


 

 

Это интересно: