→ Пигменты растений таблица. Биологические пигменты. Посадка и правильный уход за клематисом Пиилу

Пигменты растений таблица. Биологические пигменты. Посадка и правильный уход за клематисом Пиилу

Пигменты - органические соединения, присутствующие в клетках и тканях растений и окрашивающие их.Расположены пигменты в ХЛОРОПЛАСТАХ и хромопластах. Известно более 150 стойких пигментов. Многие из них важны для ФОТОСИНТЕЗА и являются источником витамина А. Аротиноиды- окрашивают растения в желтый, оранжевый или красный цвет. Флавоны и флавонолы – одни из самых распространенных растительных пигментов. Нет растения, где бы они ни были обнаружены.В природе флавоны и флавонолы являются основными пигментами, обеспечивающими желтую цветовую гамму плодов и цветов. Много этих красителей и в других органах растений, хотя там желтая окраска маскируется другими пигментами. Разнообразие оттенков желтого цвета достигается как изменением концентрации флавонов и флавонолов, так и присутствием в соке растений солей кальция и магния, увеличивающих интенсивность окраски. Халконы и ауроны- другие красители желтого цвета – близки по строению к флавонам. Встречаются они значительно реже. Среди известных нам растений эти пигменты можно обнаружить в листьях и цветах кислицы, кореопсиса и львиного зева. Как и некоторые люди, эти красители совершенно не переносят курильщиков и краснеют, если их окуривать сигаретным дымом. Отдельного упоминания заслуживают халконы еще и потому, что во многих случаях именно из них в процессе биосинтеза в растениях образуются флавоны, флавонолы и ауроны. Меланин - пигмент, встречающийся как в клетках растений, так и животных. В частности, он придаёт чёрный и коричневый цвет волосам. Отсутствие меланина в клетках делает животных и человека альбиносами. Структура молекул меланина жидкокристаллическая. Пигмент является сильным антиоксидантом. Синтетически продуцированный меланин в водных растворах оказывает на растение удивительные свойства - ускоряет рост и созревание плодов, редуцирует деятельность камбия, ускоряет прорастание семян. В организме животных меланин обладает иммуномодулированием и генопротекторной защитой. В растениях содержится в кожуре красных сортов винограда, лепестках некоторых цветков. Фитохром- голубой растительный пигмент белкового строения, контролирует процессы цветения и прорастания семян. У одних растений ускоряя цветение, у других - задерживая. Фитохром играет роль «биологических часов» растения, механизм действия пока не изучен. Известно, что строение пигмента меняется в зависимости от светлого и тёмного времени суток, сигнализируя об этом растению. Phyton - от греческого растение, сhrom - цвет, краска. Обнаружил меланин американский учёный - биохимик У. Батлер в проросшем в темноте турнепсе, в его семядолях. Это вåщество регулирует синтез белковых молекул (ДНК, РНК), образование хлорофилла, каротиноидов, антоцианов, органических фосфатов, витаминов. Если хлорофилл можно сравнить со схожими по строению клетками крови - эритроцитами, то фитохром подлежит образному сравнению с мозгом и памятью растения. Фитохром связан с клеточными мембранами и встречается практически во всех органах растения. Антоцианы - придают растениям окраску в диапазоне от розовой, красной, сиреневой, до синей и тёмно-фиолетовой. Антоцианы образуются в процессах гидролиза крахмала и по своему происхождению являются безазотистыми соединениями, близким к глюкозидам - соединениям сахара с неуглеводной частью. Усиленное образование антоцианов в клетках растения происходит при снижениях температур окружающей среды, при остановках синтеза хлорофилла, при интенсивном освещении УФ-лучами, при недостатке фосфора, необходимого для ввязывания гидролизованных крахмалом сахаров. При этом окраска листьев растений изменяется от зелёных до красных и синих цветов. Антоцианы хорошо растворимы в воде и присутствуют в соке вакуолей. Диапазон цветов изменяется благодаря наличию в растении всего трёх моделей антоцианов, различных между собой числом гидроксильных групп. Вариации в пропорциях этих пигментов в растениях дают разную окраску лепестков. В зависимости от кислотности (рН) среды сока вакуолей, антоциан придаёт ту или иную окраcку. В кислой среде он обычно имеет красные тона, например, у герани, гортензии, фиалок. В щелочной эти растения приобретают сине-голубые тона. Если же к синему или фиолетовому раствору антоциана прибавить кислоту, раствор снова станет розовым. Опытным путём это легко проверить на растениях, подбирая в качестве подкормок те или иные микроэлементы, изменяющие кислотность жидкости вакуолей. Если к нейтральному раствору антоциана добавить очень слабый щелочной раствор - получается голубое окрашивание, при более концентрированном растворе щелочи окрашивание перейдёт в жёлто-зелёное. Красная окраска - у маков, роз, герани, синяя - у васильков, голубая - у колокольчиков обусловлена наличием пигмента антоциана. Плоды винограда, слив, терна, краснокочанной капусты, свеклы окрашены антоцианом. Считается, что антоциан защищает растения от низких температур, от вредного воздействия солнечного цвета на цитоплазму. Антохлор - пигмент жёлтого цвета. Встречается в клетках кожици лепестков первоцвета (баранчики, примула), льнянки, жёлтого мака, георгины, в плодах лимонов и других растениях. Антофеин - редко встречающийся пигмент тёмного цвета. Вызывает окраску пятен на крыльях венчика у русских бобов (Faba vulgaris). Каротиноиды - содержатся в растениях, устойчивых к пониженным температурам. Когда хлорофилл исчерпывается в холодное время года, листья приобретают заметную жёлтую или оранжевую окраску за счёт пролонгированного действия пигмента каротиноида. Каротиноиды защищают растения от пагубного действия солнечного света, принимая УФ-излучения солнца на себя, трансформируя в энергию и передавая её хлорофиллу. С помощью такой передачи хлорофилл регулирует процессы фотосинтеза. В доказательство того, что каротиноиды присутствуют в листьях постоянно наравне с хлорофиллом, послужит следующий эксперимент: к спиртовой вытяжке хлорофилла прилить бензина 1:1, взболтать смесь и дать отстояться, смесь расслоится. Нижний слой из спирта имеет жёлтую окраску и содержит жёлтый пигмент ксантофилл. Верхний бензиновый слой зелёного цвета и содержит хлорофилл и каротин. Оранжево-красный цвет растениям даёт пигмент каротин, жёлтую - ксантофилл. Эти пигменты имеют белково-липоидную основу. Эти пигменты обнаружены в плодах помидоров, апельсинов, мандаринов, в корне моркови. Основная роль этих пигментов- придать растениям яркую привлекательную окраску, привлекая птиц и животных для разнесения семян. Цветы с оранжево-жёлтой окраской - лютик, настурция. Эфирные масла растений - представляют собой чаще бесцветные или желтоватые прозрачные жидкости, чуть реже - темно-коричневые, красные, зеленые или синие, зеленовато-синие. Запах эфирных масел всегда специфический и ароматный. Вкус у эфирных масел - пряный, острый, жгучийи зависит от растения, из которого они получены. Плотность большинства эфирных масел меньше единицы, а некоторые, например, гвоздичное масло тяжелее воды. Эфирные масла практически не растворимы в воде. Если взбалтать эфирное масло с водой образуется эмульсия, и вода приобретает специфический запах и вкус эфирного масла. Почти все эфирные масла хорошо растворимы в спирте, в жирных маслах, в минеральных маслах и смешиваются во всех пропорциях с хлороформом, эфиром. Реактив Судан III окрашиваетэфирные масла растений в оранжевый цвет. Температура кипения эфирных масел составляет от 40 0С, причем фракция монотерпенов кипит при 150-190 0С, фракция сесквитерпенов при 230-300 0С. Эфирные масла растений оптически активны. Реакция масел нейтральная или слегка кислая. Эфирные масла растений перегоняются с водяным паром, причем монотерпены перегоняются хорошо, сесквитерпены – хуже. При охлаждении эфирных масел некоторые компоненты выкристаллизовываются (ментол, тимол, камфора). Твердую часть эфирного масла называют стеароптен, жидкую – элеоптен.

РАСТИТЕЛЬНЫЕ ПИГМЕНТЫ

РАСТИТЕЛЬНЫЕ ПИГМЕНТЫ , органические соединения, присутствующие в клетках и тканях растений и окрашивающие их. Наиболее распространенным из растительных пигментов является зеленый пигмент - ХЛОРОФИЛЛ, который имеется у всех высших растений. АРОТИНОИДЫ окрашивают растения в желтый, оранжевый или красный цвет. Расположены пигменты в ХЛОРОПЛАСТАХ и хромопластах. Известно более 150 стойких пигментов. Многие из них важны для ФОТОСИНТЕЗА и являются источником витамина А. Антоцианы, отвечающие за розовый, красный, голубой и бурый цвета, находятся в клеточном СОКЕ растений. Осенью укорачивание дня и понижение температуры приводят к соединению этих пигментов с другими веществами, что вызывает окрашивание листвы деревьев в яркие цвета. см. также ПИГМЕНТАЦИЯ .


Научно-технический энциклопедический словарь .

Смотреть что такое "РАСТИТЕЛЬНЫЕ ПИГМЕНТЫ" в других словарях:

    - (техн.). П. называются различного рода красящие веществакак естественные, так и искусственные, в значительных количествахупотребляемый при крашении изделий из волокнистых веществ (пряжи,тканей, бумаги и пр.), кожи, металлов и других предметов.… … Энциклопедия Брокгауза и Ефрона

    П. называются различного рода красящие вещества, как естественные, так и искусственные, в значительных количествах употребляемые при крашении изделий из волокнистых веществ (пряжи, тканей, бумаги и пр.), кожи, металлов и других предметов. Число… …

    - (техн.) П. называются различного рода красящие вещества, как естественные, так и искусственные, в значительных количествах употребляемые при крашении изделий из волокнистых веществ (пряжи, тканей, бумаги и пр.), кожи, металлов и других предметов … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Жирные (жиры растительные), продукты, извлекаемые из растит. сырья и состоящие в осн. из триглицеридов высших жирных к т. Осн. источники Р. м, масличные растения (масличные культуры). Р. м. содержатся также в косточках нек рых плодовых деревьев… … Химическая энциклопедия

    У этого термина существуют и другие значения, см. Пигмент. Хлоропласты в клетках … Википедия

    Растительные ресурсы составляют часть природных богатств СССР. Это его флора и разнообразная равнинная и горная (зональная и интразональная) растительность. Велика роль пищевых и кормовых растений, они служат сырьём для промышленности и… … Большая советская энциклопедия

    Клеи растительные - – декстрины – получают в результате обработки крахмала кислотой или нагреванием его при температуре 150 200°С. Применяются в красочных веществах, клеевых шпаклевках, грунтовках, для наклеивания бумажных обоев. [Словарь строительных материалов и… … Энциклопедия терминов, определений и пояснений строительных материалов

    черные пигменты - Красящим началом является аморфный углерод. Лучшие сорта получают обжиганием углеродосодержащих веществ при недостаточном доступе воздуха. В зависимости от сжигаемых материалов Ч. П. подразделяются на растительные (виноградная Ч., Ч.… … Словарь иконописца

    МОЧА - (урина, urina), жидкость, отде ляемая почками и выделяемая из организ ма наружу через систему мочевыводящих путей. СМ. удаляются из организма почти все азотистые продукты обмена веществ (за исключением небольших количеств, поступающих в пот и в… … Большая медицинская энциклопедия

    Какими чернилами писали на папирусе древние римляне, осталось до сих пор неизвестным в точности. Вероятно, их окрашивающее вещество была сажа: при раскопках в Геркулануме найдена была чернильница, содержавшая смесь сажи с маслом, а некоторые… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Фотосинтетические пигменты высших растений делятся на две группы - хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.

Хлорофиллы

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b - для сравнения - спектр каротиноидов.

Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях - в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо - это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой "голове" присоединен длинный углеводородный "хвост" - сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.


Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН 3 - у хлорофилла а; -СНО - у хлорофилла b

Связь такой структуры с функцией можно описать следующим образом:

а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;

б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;

в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;

г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;

д) поглощение световой энергии головой приводит к эмиссии электронов.

Хлорофилл а - фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?

Каротиноиды

Каротиноиды - это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов - ликопина.

Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды бывают двух типов - каротины и ксантофиллы. Каротины - это углеводороды, большую часть которых составляют тетратерпены (С 40 -соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.

Спектры поглощения и спектры действия

При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса - тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия - это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае - на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения - это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.

Возбуждение пигментов светом

Пигменты - это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние , т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией . При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.

Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные "дырки", например:


Всякий потерянный электрон будет принят другой молекулой - так называемым акцептором электрона , так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона .

Главные и вспомогательные пигменты

Фотосинтетические пигменты бывают двух типов - главные и вспомогательные . Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.

Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает "пигмент" (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.

9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов - а или b - обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?

Фотосинтетические единицы и реакционные центры

За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц , которые называют фотосистемами I и II (ФСI и ФСII) . Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром ; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.

Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами . Как полагают, более мелкие частицы составляют фотосистему I, а более крупные - фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) "переливается" со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а - пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 - это энергетические ловушки . Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.

Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.

· Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.

В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.

Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.

Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.

Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) избирательно поглощать энергию света,

2) запасать ее в виде энергии электронного возбуждения,

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

· Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.

К каротиноидам относятся 3 группы соединения:

Оранжевые, или красные каротины;

Жёлтые ксантофиллы;

Каротиноидные кислоты.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Поглощение света в качестве дополнительных пигментов;

2) Защита молекул хлорофилла от необратимого фотоокисления;

3) Тушение активных радикалов;

4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.

· Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:

- фикоэритрины – белки красного цвета;

- фикоцианин – синеголубые белки;

- алофикоцианин – синие белки.

Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.

На глубине 30 м полностью исчезают красные лучи

На глубине 180 м – жёлтые

На глубине 320 м – зелёные

На глубине более 500 м не проникают синие и фиолетовые лучи.

Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.

2) Фикобилины выполняют у водорослей функции светособирающего комплекса.

3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.

Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов.

Сущность фотофизического этапа

Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой).

Фотофизический этап входит в световую фазу фотосинтеза.

Фотофизический этап начинается с поглощения квантов света, электроны атомов входящих в состав пигментов. В первую очередь кванты света будут поглощаться наиболее подвижными электронами в молекуле хлорофилла, т.е. теми, которые слабее удерживаются ядром. Такими подвижными электронами в молекуле хлорофилла являются делокализованные p-электроны двойных связей, орбитали которых обобщены между двумя ядрами и неспаренными электронами атомов N2 и О2 в порфириновом ядре. Именно с этим связано то, что молекулы хлорофилла – две основные линии поглощения (в красной и сине-фиолетовой). Из возбужденного первого синглетного и триплетного состояния, молекула хлорофилла так же может переходить в основное состояние, при этом ее дезактивация (потеря энергии) может проходить:

1) Путем выделения энергии в виде света или тепла

2) Путем переноса энергии на другую молекулу пигмента

3) Путем затрачивания энергии на фотохимические процессы (потеря электрона и присоединение его к акцептору, с образованием АТФ и НАДФН2)

В любом из указанных случаев молекула пигмента дезактивируется и переходит на основной энергетический уровень.

Рассмотрение энергетических сотояний молекулы хлорофилла и различных путей использования энергии электронного возбуждения, указывает, что магнийпорфирин одновременно обладает способностью поглощать и сохранять энергию в виде энергии электронного возбуждения и способностью к окислительно-восстановительным изменениям. Возбужденная молекула хлорофилла – мощный восстановительный агент, играющий решающую роль в образовании высоковосстановленных кофакторов в реакциях фотосинтеза. Хлорофилл имеет две функции: поглощение и передача энергии. Основная часть молекул хлорофилла (свето-собирающий комплекс) только поглощает свет и переносит энергию возбуждения на особые молекулы хлорофилла которые непосредственно учувствуют в фото-химическом процессе. Энергия квантов света улавливается от 200 до 400 молекул антенного хлорофилла свето-собирающего комплекса и как-бы стекается к одной молекуле – ловушке, входящая в реакционный центр.

В улавливании и передачи энергии на молекулу хлорофилла-ловушки могут участвовать не только молекулы хлорофилла но и каратиноиды и фикобилины. Передача энергии между молекулами пигментов идет главным образом резонансным путем без разделения зарядов с большой скоростью, передача энергии происходит от пигментов поглощающих свет с меньшей длинной волны, к пигментам поглощающим свет с большей длинной волны. Потеря энергии приводит к превращению квантов более мелкие с большей длинной волны, поэтому основные формы хлорофилла к которым стекается энергия, является более длинноволновые, обратный перенос энергии невозможен.

Фотофизический этап заключается в том , что кванты света поглощаются и переводят молекулы пигмента в возбужденное состояние, затем эта энергия приносится на хлорофилл-ловушку входящую в реакционный центр, осуществляющий первичные фото-химические реакции – разделение зарядов.

Фотохимический этап

Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ . Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2 .

Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей:

· главного антенного компонента

· двух фото фиксирующих систем.

Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы:

· установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1 ,

· фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2 .

Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны700нм . Во второй системе 680нм . Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов.

Различают два типа потока электронов:

· циклический

· нециклический.

При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно , при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ , выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Фотосистема II

Фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II - это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса.

Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом.

Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование.

Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением:

Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее:

Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала

Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е - -> ПХ -2 .

Пластохинон - производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ -2 + 2Н + -> ПХН 2 . Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл 680 на Хл 700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН +), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н + по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны).

__________________________________________________________________________

Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса

Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором . Этот комплекс по форме напоминает гриб и состоит из двух частей - факторов сопряжения: круглой шляпки F 1 , выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F 1 . Белок F 1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F 1 не способен синтезировать АТФ. Способность синтезировать АТФ - это свойство единого комплекса F 0 -F 1 , встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану.

Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается.


Весь процесс, обеспечивающий создание в растениях различных цветов, на первый взгляд может представиться весьма простым. Однако существующие в природе многочисленные расцветки и тона являются результатом сложного взаимодействия основных пигментов в различных сочетаниях со средой. Зависят они и от порядка размещения естественных красителей в растительных тканях. Современными исследованиями установлено, что естественные красители (в основном из группы фенолов), содержащиеся в различных частях растений, играют большую роль в их жизни.

Наличие в клетках растений красящих веществ помогает им наиболее эффективно поглощать и использовать солнечные лучи. Все пигменты растений представляют собой избирательно работающие физико-химические фильтры - ловушки солнечного света. Если хлорофилл листьев поглощает только красные и сине-фиолетовые лучи, используемые в процессе фотосинтеза для образования сложных органических соединений из простых минеральных веществ почвы и воздуха, то ярко-окрашенные цветки, благодаря содержанию в них разнообразных пигментов, улавливают лучи иной длины волны и превращают их в другие формы энергии. Эти формы энергии используются растениями для созревания пыльцы и яйцеклеток, синтеза ароматических веществ, повышения температуры в органах размножения, что ускоряет течение обменных процессов.

Хлорофиллы

Важную роль в процессе фотосинтеза играет зеленый пигмент - хлорофилл. Французские ученые Пелетье и Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» - зеленый и «филлон» - лист).

Хлорофилл (от греч. chloros - зеленый и phyllon - лист), зеленый пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез, т. е. превращают солнечную энергию в энергию химических связей органических соединений. Содержится и в фотосинтезирующих организмах других видов - водорослях и бактериях. С точки зрения химического строения хлорофилл неоднороден. Существуют различные типы хлорофиллов. Основой химического строения всех хлорофиллов является сложное циклическое соединение - порфирин, содержащий центральный атом Mg и многоатомный гидрофобный спиртовый остаток.

Физико-химические свойства хлорофилла. Mолекулярный вес хлорофилла a 893,52. В изолированном состоянии хлорофилл образует черно-голубые микрокристаллы, которые плавятся с образованием жидкости при 117-120°С. Хлорофилл а легко растворяется в диэтиловом эфире, этаноле, ацетоне, хлороформе, бензоле, пиридине. Растворы хлорофилла а имеют сине-зеленую окраску и обладают сильной красной флуоресценцией. Главные максимумы спектра поглощения разбавленных растворов хлорофилла а в диэтиловом эфире - 429 и 660 нм. По химической струкутре хлорофилл а относится к хлоринам (дигидропорфиринам), так как одно из его пиррольных колец (кольцо IV) гидрировано по С17-С18 связи. В IV пиррольном кольце к остатку пропионовой кислоты присоединен высокомолекулярный спирт фитол. Некоторые растения, вместо или наряду с хлорофиллом a, синтезируют его аналог, в котором этильная группа (-CH2-CH3) во II пиррольном кольце замещена винильной группой (-CH=CH2). Молекула такого хлорофилла имеет две винильных группы, одну в кольце I, другую - в кольце II.

Рис.1. Структурная формула хлорофилла

Хлорофилл b отличается от хлорофилла a тем, что боковым заместителем у углеродного атома C3 во II пиррольном кольце вместо метильной является альдегидная группа -Н-С=О. В молекуле хлорофилла с пиррольные кольца не гидрированы, т. е. этот пигмент является классическим порфирином. Хлорофилл d и бактериохлорофиллы c, d, e и g также относятся к группе хлоринов, а бактериохлорофиллы а и b-группе бактериохлоринов (тетрагидропорфиринам), так как в их молекулах II и IV пиррольные кольца гидрированы по С7-С8 и С17-С18 связям. Указанные хлорофиллы различаются также структурой боковых заместителей и высокоатомного спирта, присоединенного к тетрапиррольному макроциклу. По химической структуре хлорофиллы родственны природным комплексам порфиринов, содержащим железо цитохромам, красящему веществу крови - гему, а также простетическим группам некоторых ферментов - пероксидаз и каталазы.

Состояние и функция хлорофилла в хлоропластах. Общее содержание хлорофилла в хлоропластах обычно составляет около5% на сухую массу. Более 99% хлорофилла находится в составе светособирающих пигмент-белковых комплексов, которые выполняют функцию антенны, т. е. поглощают солнечную энергию или акцептируют ее от вспомогательных пигментов - каротиноидов или фикобилинов, а затем транспортируют к реакционным центрам (см. Фотосинтез). Менее 1% хлорофилла находится в составе реакционных центров, которые осуществляют запуск цепи фотосинтетического транспорта электронов. У высших растений и водорослей существуют два типа реакционных центров, соответствующих двум фотосистемам хлоропластов (фотосистемы I и фотосистемы II).

Реакционные центры ФС I содержат только хлорофилл а, реакционные центры ФС II - хлорофилл а и его безмагниевый аналог - феофитин. Хлорофиллы в и с не входят в состав реакционных центров, выполняя функцию светособирающих антенн. Спектральный анализ показывает, что состояние хлорофилла в фотосинтетическом аппарате существенно отличается от состояния изолированного хлорофилла в растворах из-за пигмент-пигментных и пигмент-белковых взаимодействий. Например, хлорофилл a образует в фотосинтетическом аппарате не менее 10 различных спектральных форм.

Поглощая квант света, изолированная молекула хлорофилла переходит в возбужденное синглетное состояние (время жизни около 5 нс) и затем дезактивируется с испусканием кванта флуоресценции (квантовый выход - 20-40%) или заселением долгоживущего (время жизни 1-3 мс) триплетного состояния (квантовый выход - 40-60%). Возбужденные светом молекулы хлорофилла способны переносить электрон от молекулы донора на молекулу акцептора. В растворах хлорофилла этот процесс происходит, главным образом, за счет активности триплетного состояния, так как время жизни и концентрация триплетных молекул в растворах значительно больше, чем синглетных. В фотосинтетическом аппарате за счет наличия организованной структуры энергия возбуждения хлорофилла антенны эффективно захватывается хлорофиллом реакционных центров.

Первичными акцепторами возбуждения служат пигменты P680 в реакционных центрах ФС II и P700 - в реакционных центрах ФС I, которые, по-видимому, являются специально организованными димерами хлорофилла. Возбужденные молекулы этих димеров отдают электрон соответствующим акцепторам, включенным в структуру реакционных центров, и тем самым запускают процесс фотосинтетического транспорта электрона. Скорость захвата энергии возбуждения хлорофиллом реакционных центров и ее трансформации в энергию разделенных зарядов очень велика, и поэтому завершается за очень короткое время - 10-50 пс. Вследствие этого разделение зарядов осуществляется синглетно-возбужденными молекулами хлорофилла, а образование триплетных состояний, как значительно более медленный процесс, подавлено примерно на 2 порядка величины.

Однако триплетные молекулы хлорофилла образуются в результате обратной рекомбинации разделенных зарядов в реакционных центрах при их перегрузке, т. е. при отсутствии достаточно быстрого оттока электронов из реакционных центров в электрон-транспортную цепь. Кроме хлорофилла антенны и реакционных центров, существует также свободный хлорофилл, который не включен в процессы фотосинтетического транспорта энергии и заряда и эффективно образует триплетное состояние при фотовозбуждении. Концентрация этого хлорофилла составляет несколько десятых долей процента.

В результате запускаемого хлорофиллом электронного транспорта высшие растения, водоросли, цианобактерии и прохлорофитные бактерии осуществляют фоторазложение воды с выделением в атмосферу газообразного кислорода, образование АТФ и фиксацию СО2 с образованием углеводов. Таким образом свет, поглощенный хлорофиллом, преобразуется в потенциальную химическую энергию органических продуктов фотосинтеза и молекулярного кислорода.

Фикобилины

Сине-зеленые водоросли (цианобактерии), красные морские водоросли и некоторые морские криптомонады помимо хлорофилла а и каротиноидов содержат пигменты фикобилины. Наиболее известные представители фикобилинов - фикоэритробилины и фикоцианобилины. Первые преобладают у красных водорослей, вторые - у сине-зеленых.

Структура и свойства фикобилинов. По структуре фикобилины. (от греч. «phycos» - водоросль и лат. bilis - желчь) относятся к группе желчных пигментов - билинов (у животных представитель этой группы - билирубин). Это тетрапирролы с открытой цепью, имеющие систему конъюгированных двойных и одинарных связей. В своем составе они не содержат атомов магния или других металлов, а также фитола.У фикоцианобилина пиррольные кольца соединены между собой метиновыми мостиками. I и IV пирролы имеют по одной карбонильной группе. Пиррольные кольца содержат следующие боковые радикалы: четыре метильных (у C1,3,6,7), винильную (у С2), этильную (у С8) и два остатка пропионовой кислоты (у С4 и С5).

Фикобилины являются хромофорными группами фикобилипротеинов - глобулиновых белков, с которыми в отличие от хлорофиллов они связаны прочными ковалентными связями. Фикобилипротеины делятся на три основные группы; 1) фикоэритрины - белки красного цвета с максимумом поглощения от 498 до 568 нм, 2) фикоцианины - сине-голубые белки с максимумами поглощения от 585 до 630 нм, 3) аллофикоцианины - синие белки с максимумами поглощения от 585 до 650 нм. Все эти хромопротеины обладают флуоресценцией с максимумами 575 - 578, 635 - 647 и 660 нм соответственно. Фикобилипротеины водорастворимы, в клетках водорослей они локализованы в фшобилисомах - гранулах, расположенных на наружной поверхности фотосинтетических ламелл.

Значение фикобилинов. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектра (см. рис. 4.3). Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м - желтые, на глубине 322 м - зеленые и, наконец, на глубину свыше 500 м не проникают даже синие и фиолетовые лучи. В связи с таким изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже - сине-зеленые и еще глубже - водоросли с красной окраской. В. Т. Энгельман назвал это явление хроматической комплементарной адаптацией
водорослей. По его наблюдениям (1881 - 1884), наиболее интенсивная ассимиляция С02 у водорослей с различной окраской соответствует максимумам поглощения света пигментными системами этих водорослей.

Русский исследователь Н. М. Гайдуков (1903) экспериментально показал, что если культуру синезеленой водоросли Oscillaria sancta выращивать на свету разного спектрального состава, то у нее развивается дополнительная (комплементарная) окраска. При освещении зеленым светом водоросли становятся оранжево-красными, а при дейтвии красных лучей - зелеными. В настоящее время известно, что эти изменения цвета клеток связаны с изменениями в синтезе фикобилинов, принимающих участие в процессе фотосинтеза. Таким образом, у водорослей фикобилины - дополнительные пигменты, выполняющие вместо хлорофилла b функции светособирающего комплекса. Около 90% энергии света, поглощенного фикобилинами, передается на хлорофиллы а. Явление хроматической комплементарной адаптации обнаружено далеко не у всех видов синезеленых и красных водорослей. У многих из них адаптация к изменяющемуся спектральному составу света обеспечивается изменением количества и состава хлорофиллов а.

Экологическое значение спектрально-различных форм пигментов у фотосинтезирующих организмов .Пигментные наборы фотосинтезирующих организмов позволяют им использовать весь диапазон длин волн падающей на Землю солнечной энергии. Обращает внимание большое различие в спектрах поглощения у представителей разных групп фотосинтезирующих организмов и прежде всего существенные сдвиги в максимумах поглощения хлорофиллов в красной области спектра. Несомненно экологическое значение этого явления, позволяющего избегать конкуренции за свет между разными группами фотосинтезирующих организмов. Что же касается эволюции спектров поглощения хлорофиллов, то очевидна тенденция к перемещению в более коротковолновую часть спектра с более высоким энергетическим уровнем.

Значение фикобилинов - поглощать лучи определенного участка спектра. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектра. Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м - желтые, на глубине 322 м - зеленые и, наконец, на глубине свыше 500 м не проникают даже синие и фиолетовые лучи. В связи с этим изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже сине-зеленые и еще глубже водоросли с красной окраской. Такое явление В. Т. Энгельман назвал хроматической комплементарной адаптацией водорослей.

У водорослей фикобилины - дополнительные пигменты, выполняющие вместо хлорофилла б функции светособирающего комплекса. Около 90% энергии света, поглощенного фикобилинами, передается на хлорофилл а. Кроме фикобилинов, участвующих в фотосинтезе у водорослей, у всех растений имеется другой фикобилин - фитохром, являющийся фиторецептором для восприятия красного и дальнего красного света и выполняющий регуляторные функции.

Каротиноиды

Это большая группа пигментов желтого, оранжевого и красного цвета. Каротиноиды широко распространены в природе: их обнаружено больше трехсот. Однако в фотосинтезе участвуют лишь некоторые из них. Имеют в своей структуре изопреновую цепь из четырех метилбутадиеновых остатков, разделенных в середине CH=CH-группой, и одно или два циклогексеновых β-иононовых кольца на концах цепи. Каротиноиды делятся на каротины - ненасыщенные углеводороды и ксантофиллы - кислородсодержащие каротиноиды, имеющие гидрокси-, метокси-, карбокси-, кето-и эпоксигруппы. Синтезируются высшими растениями, грибами и бактериями; животные их не образуют, а используют для синтеза витамина А. Широко распространены в растениях α-, β- и γ-каротины, ликопин, зеаксантин, виолаксантин, флавоксантин и др. В значительных количествах каротиноиды накапливаются в корнеплодах моркови, плодах шиповника, рябины обыкновенной, смородины, облепихи, томатов, абрикоса, тыквы, цветках календулы, листьях шпината, салата, крапивы. Наибольшую биол. активность проявляет β-каротин, в результате гидролитического расщепления которого в животном организме вырабатываются две молекулы витамина А, из остальных - одна молекула.

Поглощение света каротиноидами, а следовательно, их окраска обусловлены наличием конъюгированных двойных связей. β-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноидами не поглощаются. Каротиноиды в отличие их от хлорофилла не обладают способностью к флюоресценции. Подобно хлорофиллу, каротиноиды в хлоропластах вступают во взаимодействие с белками.

Каротиноиды играют существенную роль в процессе фотосинтеза, участвуя в реакциях эпоксидации и образуя многочисленные кислородные производные. Они также участвуют в процессах дыхания и роста растений, переноса активного кислорода, фиксации света, стимулируют окислительно-восстановительные и генеративные процессы. В растениях они находятся в хромо- и хлоропластах в жирорастворимом состоянии или в виде водорастворимых белковых комплексов.

Они поглощают определенные участки спектра света и передают энергию на хлорофилл, одновременно защищая молекулу хлорофилла от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое взаимопревращение ксантофиллов. Примером может служить виолаксантиновый цикл.


Рис.2. Виолаксантиновый цикл

Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода. Производные каротиноидов - витамин А, ксантоксин, действующий подобно АБК. Хромопротеин родопсин, обнаруженный у некоторых галофитных бактерий, поглощая свет, функционирует в качестве Н + -помпы. Хромофорной группой бактериородопсина является ретиональ-альдегидная форма витамина А.

Физиологическая роль каротиноидов. Уже тот факт, что каротиноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутствие хлорофилла этот процесс осуществляется. В настоящее время установлено, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в передаче энергии на молекулы хлорофилла. По данным русского исследователя Д.И. Сапожникова, на свету происходит взаимопревращение ксантофиллов (виолаксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе разложения воды и выделения кислорода при фотосинтезе.

Имеются данные, что каротиноиды выполняют защитную функцию, предохраняя различные органические вещества, в первую очередь молекулы хлорофилла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов. Ряд исследователей указывают, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков.

По мнению П. М. Жуковского, микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца - желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каротин обусловливает подвижность сперматозоидов. По данным В. Мевиуса, мате­ринские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом - кроцетином.



 

 

Это интересно: