→ Белки как уникальный класс биополимеров. Биополимеры - белки презентация к уроку по биологии (10 класс) на тему Белки биополимеры их строение и функции

Белки как уникальный класс биополимеров. Биополимеры - белки презентация к уроку по биологии (10 класс) на тему Белки биополимеры их строение и функции

Российский Государственный Технологический Университет имени К. Э. Циолковского

Кафедра: технологии проектирования и эксплуатации летательных аппаратов

Биологические полимеры

Выполнил:

студент 1 курса,

группы 2АВС-1ДБ-270

Бессонов И.И.

Проверил:

Евдокимов Сергей Васильевич

Москва 2013

История открытия...............................................................................................3

Классификация биополимеров.......................................................................4-6

Номенклатура......................................................................................................7

Физико-химические свойства биополимеров..................................................8

Биологическая роль и применение биополимеров.......................................8-9

Список используемой литературы...................................................................10

История открытия

Биополиме́ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды.

Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

История целенаправленного изучения белков началась в XVIII веке, когда в результате работ французского химика Антуана Франсуа де Фуркруа и других учёных по изучению таких веществ как альбумин, фибрин и глютен, белки были выделены в отдельный класс молекул.

В 1836 году появилась первая модель химического строения белков. Эта модель была предложена Мулдером на основании теории радикалов, и до конца 1850-х она оставалось общепризнанной. А всего через 2 года в 1838 году белкам было дано современное название – протеины. Его предложил работник Мулдера Якоб Йенс Берцелиус.
К концу XIX века было исследовано большинство аминокислот, входящих в состав белков, что видимо и послужило толчком к тому, что в 1894 году немецкий ученый Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков.

В начале XX века предположение Косселя было экспериментально доказано немецким химиком Эмилем Фишером.

В 1926 году американский химик Джеймс Самнер доказал, что фермент уреаза, вырабатываемый в организме относится к белкам. Своим открытием он открыл дорогу к осознанию важности роли играемой белками в организме человека.

В 1949 году Фред Сенгер получил аминокислотную последовательность гормона инсулина и тем самым доказал, что белки - это линейные полимеры аминокислот.

В 1960-х годах были получены первые пространственные структуры белков, основанные на дифракции рентгеновских лучей на атомарном уровне.

Классификация биополимеров:

Белки

Белки имеют несколько уровней организации - первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,

β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно,неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки.

Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Нуклеиновые кислоты

Первичная структура ДНК - это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5"- на 3"-конец цепи.

Вторичная структура - это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипаралельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований - образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином.

Позднее это и подобные ему вещества получили название нуклеиновых кислот.Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105-106.

Исходными веществами, из которых построены нуклеотиды – звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой – дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Полисахариды

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды - целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Строение биополимеров

Белки (или протеины) относят к высокомолекулярным органическим веществам. Структурно молекула белка состоит из сотни или более, соединённых в цепочку пептидной связью, аминокислот. Существование большого количества разных аминокислот и множество комбинаций по их соединению дают в сумме огромное количество вариантов белков.

Известно, что в каждом живом организме аминокислотный состав белков определяется его собственным генетическим кодом. К примеру, в человеческом организме встречается более 5 миллионов различных белков, причем ни один из них не идентичен белкам любого другого живого организма. Для построения всего этого многообразия белков, необходимо наличие всего 22 аминокислот, которые и являются генетическим кодом человека. На первый взгляд кажется невероятным тот факт, что комбинации всего двух десятков аминокислот образуют в организме человека 5 миллионов различных видов белка, но это лишь указывает на необычайно сложную структуру их молекул.

Из 22 аминокислот составляющих генетический код человека, 9 считаются незаменимыми, так как они не синтезируются в организме человека и должны поступать в него с пищей. К ним относятся: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. А аминокислоты аланин, аргинин, аспарагин, карнитин, цистеин, цистин, глутаминовая кислота, глутамин, глицин, гидроксипролин, пролин, серин, тирозин не являются незаменимыми, и могут синтезироваться в организме в реакциях трансаминации (синтез из других аминокислот).

Кроме перечисленных 22 аминокислот, в организме человека встречаются еще более 150 других. Находясь в различных клетках и тканях, будучи в свободном или связанном виде, они отличаются от 22 вышеперечисленных тем, что никогда не входят в состав белков организма.

Для построения в организме белковой молекулы важно наличие всех аминокислот и количественные пропорции между ними. При уменьшении количества любой из аминокислот пропорционально уменьшается эффективность всех остальных аминокислот в процессе синтезе белка. А в случае отсутствия хотя бы одной из незаменимых, синтез будет не возможен.

Физико-химические свойства биополимеров

Особенности цепной структуры биополимеров на примере белков, нуклеиновых кислот и полисахаридов. Гомо- и гетерополимеры. Представление о биополимерах как о линейных, свободно-сочлененных, цепных структурах. Типы связей в молекулах биополимеров – ковалентные (пептидные, фосфодиэфирные, гликозидные, дисульфидные) и нековалентные (водородные связи, ионные связи, силы Ван-дер-Ваальса, межплоскостные взаимодействия). Гидрофобные взаимодействия. Термодинамика возникновения гидрофобных взаимодействий. Силы ближнего и дальнего взаимодействия.

Физико-химические свойства белков: молекулярная масса, кислотно-основные свойства белков. Заряд белковой молекулы, изоэлектрическая точка. Буферные свойства белков. Растворимость, коллоидные свойства, оптические свойства белков.

Биологическая роль и применение биополимеров

Биологическая роль биополимеров:

1. Нуклеиновые кислоты выполняют в клетке генетические функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте - ДНК (иногда в рибонуклеиновой кислоте - РНК) определяет (в форме генетического кода (См. Генетический код)) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём биохимические процессы.

2. Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки - основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов.

Применение биополимеров:

Биополимеры (полное название - биоразлагаемые полимеры) отличаются от остальных пластиков возможностью разложения на микроорганизмы путем химического или физического воздействия. Именно это свойство новых материалов позволяет решать проблему отходов. В настоящее время разработка биополимеров ведется по трем основным направлениям: производство биоразлагаемых полиэфиров на основе гидроксикарбиновых кислот, придание биоразлагаемости промышленным полимерам, производство пластических масс на основе воспроизводимых природных компонентов.

Биоразлагаемые полиэфиры (полимеры на основе гидроксикарбиновых кислот) :

Одним из самых перспективных биопластиков для применения в упаковке считается полилактид – продукт конденсации молочной кислоты. Его получают как синтетическим способом, так и ферментативным брожением декстрозы сахара или мальтозы сусла зерна и картофеля, которые являются возобновляемым сырьем биологического происхождения. Полилактид – прозрачный бесцветный термопластический полимер. Его основное преимущество - возможность переработки всеми способами, применяемыми для переработки термопластов. Из листов полилактида можно формовать тарелки, подносы, получать пленку, волокно, упаковку для пищевых продуктов, имплантанты для медицины. Но широкое его применение сдерживается низкой производительностью технологических линий и высокой стоимостью получаемого продукта.

Список используемой литературы

1. Н.Е.Кузьменко, В.В.Еремин, В.А.Попков // Начала Химии.

2. Н.В.Коровин//Общая Химия.

3. Н.А.Абакумова, Н.Н.Быкова. 9. Углеводы // Органическая химия и основы биохимии.

На вопрос Биология 9 класс!! ! Ответе подробно! Почему белки биополимеры??? заданный автором Малосольный лучший ответ это Биополиме́ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды.
Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды) .
Содержание [убрать]
1 Белки
2 Нуклеиновые кислоты
3 Полисахариды
4 См. также
[править] Белки
Основная статья: Белки
Белки имеют несколько уровней организации - первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.
Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются
α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,
β-листы (складчатые слои) , когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно) ,
неупорядоченные участки
Для предсказания вторичной структуры используются компьютерные программы.
Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка) , когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.
Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.
В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.
Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т. е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г. , содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Белки – это биополимеры, состоящие из остатков аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот. Структура белка-

Обладают неисчерпаемым разнообразием структур.

Первичная структура – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH .

Третичная структура – это пространственная конфигурация, принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка. Физические свойства-

Одни белки растворяются в воде, образуя, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей). Химические свойства

1. Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д. 2. Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO4 → фиолетовая окраска

3. Гидролиз Белок + Н2О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты );

· регуляторные (гормоны );

· структурные (кератин шерсти, фиброин шелка, коллаген);

полимерами называются вещества, имеющие большую молекулярную массу, состоящую из множества повторяющихся структурных звеньев. Существуют природные полимеры (крахмал , белки, целлюлоза, каучук) и синтетические полимеры (полиэтилен , фенопласты). Низкомолекулярные вещества, из которых синтезируют полимеры, называются мономерами.

CH2=CH2 мономер полиэтилена - этилен

(-CH2-CH2-)n –молекула полимера

CH2-CH2- – структурное звено – многократно повторяющаяся группа атомов. Физические свойства-

Полимеры имеют высокую механическую прочность. Стойкие, Не имеют определённой температуры плавления , не растворяются в воде и в большинстве органических растворителей. Полиэтилен – полупрозрачный материал, воздухо- и влагонепроницаем, легкоплавкий, химически стойкий. Применяется для плёнок, труб, бытовых изделий (посуда, игрушки), электроизоляции, поверхностных покрытий.



8. Взаимное влияние атомов в молекулах органических веществ. Этанол - типичный представитель класса предельных одноатомных спиртов, в котором функциональная группа ОН связана с углеводородным радикалом. Так как кислород обладает большей электроотрицательностью по сравнению с водородом и углеродом, связь О-Н в молекуле этаноласильно полярная, с избыточным отрицательным зарядом на атоме кислорода и с положительным зарядом на атоме водорода. Вследствие этого атом водорода гидроксогруппы обладает большей реакционной способностью, чем атомы водорода в углеводородном радикале. Спирты являются амфотерными соединениями, т. е. проявляют свойства кислот и оснований.

Фенол - это производное бензола, в котором один из атомов водорода

замещен на гидроксильную группу.

Гидроксильная группа и бензольное кольцо оказывают влияние друг на друга. Под действием n-электронного облака неподеленная пара кислорода смещается в сторону бензольного ядра (возникает эффект сопряжения). Вследствие этого усиливается поляризация связи О ~ Н и возрастает подвижность атомов водорода в гидроксогруппе. Влияние же гидроксогруппы на свойства бензольного кольца проявляется в увеличении подвижности атомов водорода в положениях 2, 4, 6. Фенол обладает более выраженными кислотными свойствами по сравнению со спиртами, в частности с этанолом. Раствор фенола, применяемый для дезинфекции, называется карболовой кислотой.

Этанол и фенол реагируют со щелочными металлами (кислотные свойства

и (основное свойство), для этанол взаимодействует с галогеноводородам

фенола такая реакция невозможна Н25О4 С2Н50Н + НС] -) С2Н5С] + Н20

фенол реагирует с растворами щелочей (кислотное свойство), для этанола такая реакция невозможна

анола и фенола - веществ с одина-

Таким образом, сравнив своиства эт но различнымисвойствами, вывод о взаимном влиянии атомов.



9. Виды химическойсвязи: ионная, ковалентная (полярная, неполярная}, металлическая. Ковалентная связь образуется за счет перекрывания электронных облаков двух атомов. Каждый̆ атом предоставляет один неспаренный электрон для образования одной химической связи, при этом происходит образование общей электронной пары . Если ковалентная связь образуется между двумя одинаковыми атомами, она называется неполярной .

Если ковалентная связь образуется между двумя различными атомами, общая электронная пара смещайся к атому с большей электроотрицательностью (электроотрицательностью называется способность атома притягивать электроны). В этом случае возникает полярная ковалентная связь. Частным случаем ковалентной связи является донорно-акцепторная связь. Д ля ее образованья у одного атома должна быть свободная орбиталь на внешнем электронном уровне, а у другого - пара электронов. Один атом (донор) предоставляет другому (акцептору) свою электронную пару, в результате она становится общей, образуется химическая связь. Пример - молекула СО :

Ионная связь образуется между атомами с сильно отличающейся электроотрицательностью. При этом один атом отдает электроны и превращается в положительно заряженный ион, а атом, получивший электроны, в отрицательно заряженный. Ионы удерживаются вместе за счет сил электростатического притяжения.

Водородная связь образуется между полярными молекулами (вода, спирты, аммиак) за счет притяжения разноименных зарядов.

Прочность водородной связи существенно (~20 раз) меньше, чем ионной или ковалентной связи.

10. Водородные соединения неметаллов. Закономерности в изменений их свойств в связи с положением химических элементов в периодической системе Гидриды , В соединениях с неметаллами водород проявляет степень окисления +1. Поскольку энергия ионизации водорода очень большая, химическая связь его с неметаллами не ионная, а полярно-ковалентная. Наиболее электроотрицательные р-элементы в правой части периодов, например сера и хлор, реагируют с водородом, образуя ковалентные гидриды, которые обладают кислотными свойствами и сила этих кислот увеличивается по мере увеличения размера атома присоединяемого к водороду неметалла. Исключениями являются метан СН4, представляющий собой нейтральное соединение, а также аммиак NH3, обладающий основными свойствами. Водородные соединения неметаллов хорошо растворимы в воде и образуют кислоты с теми же формулами. Более электроотрицательные р-элементы, например алюминий, кремний и фосфор, в нагретом состоянии не реагируют с водородом. 11 . Начала термодинамики. Представления об энтропии. Термодинамика изучает физические объекты материального мира только в состоянии термодинамического равновесия. Находящаяся при определенных неизменных внешних условиях и постоянной температуре окружающей среды. Тем термодинамика рассматривает условия существования необратимых процессов. Например, распространение молекул газа (закон диффузии). Задачей термодинамики необратимых процессов сначала было изучение неравновесных процессов для состояний, не слишком сильно отличающихся от равновесного. Второе начало термодинамики. Энтропия. Второе начало термодинамики вводит новую функцию состояния – энтропию. Термин «энтропия означает «превращение». В формулировке: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия; вычисляются все проводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т, и все полученные таким образом значения суммируются (первая часть второго начала термодинамики). При реальных (неидеальных) процессах энтропия изолированной системы возрастает». Учета и сохранения количества энергии еще недостаточно для того, чтобы судить о возможности того или иного процесса. Энергию следует характеризовать не только количеством, но и качеством. При этом существенно, что энергия определенного качества самопроизвольно может превращаться только в энергию более низкого качества . Величиной, определяющей качество энергии, и является энтропия. Процессы в живой и нежи вой материи в целом протекают так, что энтропия в замкнутых изолированных системах возрастает, а качество энергии понижается . В этом и есть смысл второго начала термодинамики. Закон 3! W – число различных состояний системы, доступное ей при данных условиях, или термодинамическая вероятность макросостояния системы.

энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле равна нулю. Этот постулат может быть объяснен статистической термодинамикой, согласно которой энтропия есть мера беспорядочности системы на микроуровне: S = kblnW

12. Гинетическая связь углеводородов. Среди множества видов связей можно выделить такие, которые указывают, что первично, а что вторично, как одни объекты или явления порождают другие. Такие виды связей называются генетическими.
Между гомологическими рядами углеводородов существует генетическая связь, которая обнаруживается в процессе взаимного превращения этих веществ. Например,
С2Н6 - С2Н4 - С2Н2 - С6Н6 - С6Н6Сl6;

13. Гидролиз солей Гидролизом называется взаимодействие ионов соли с Н2О, приводящее к образованию слабого электролита.

Любую соль можно представить как продукт взаимодействия кислоты и основания.

В зависимости от видов этих исходных веществ выделяют 4 типа солей.

Соли, образованные сильной кислотой и сильным основанием:

NaOH+HCl=NaCl+H2O

Такие соли гидролизу не подвергаются и их водные растворы имеют нейтральную среду.

Соли, образованные слабой кислотой, но сильным основанием:

H2CO3 + 2 NaOH = Na2СO3 + 2 H2O

В водных растворах таких солей с H2Oбудут взаимодействовать анионы слабой кислоты, которые образуются при диссоциации соли:

Na2СO3®2Na++CO32−

Эти анионы будут присоединять к себе ионы Н+, отщепившиеся от молекул H2O, в результате этого образуется слабый электролит HСO3−- гидрокарбонат-анион, а в растворе станут накапливаться ионы ОН−, которые будут сообщать раствору такой соли щелочную реакцию.

14. Глицерин многоатомный спирт состав молекулы физические хим . Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Химические свойства многоатомных спиртов .

1. Как вещества, которые содержат гидроксильные группы, многоатомные спирты имеют сходные свойства с одноатомными спиртами.

2. При действии галогеноводородных кислот на спирты происходит замещение гидроксильной группы:

СН2ОН-СН2ОН + Н СI -> СН2ОН-СН2СI + Н2О.

Глицерин - бесцветная, вязкая, очень гигроскопичная жидкость, смешивается с водой в любых пропорциях. Сладкий на вкус, отчего и получил своё название.В соединении с пропиленгликолем становится менее текучим при понижении температуры до близкой к нулю градусам Цельсия.

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, электронные сигареты, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке).

Способы получения и применения многоатомных спиртов: 1) подобно одноатомным спиртам, многоатомные спирты могут быть получены из соответствующих углеводородов через их галогенопроизводные ; 2) наиболее употребительный многоатомный спирт – глицерин, он получается расщеплением жиров, а в настоящее время все больше синтетическим способом из пропилена, который образуется при крекинге нефтепродуктов.

15. Глюкоза представители моносахариды химическое . Глюкоза (C6H12O6), или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара.

Бесцветное кристаллическое вещество сладкого вкуса, растворимое в воде и органических растворителях, растворимо в реактиве Швейцера: аммиачном растворе гидроксида меди - Cu(NH3)4(OH)2, в концентрированном растворе хлорида цинка и концентрированном растворе серной кислоты.

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий):

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;

2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;

3) глюкоза есть в животных организмах;

4) в крови человека ее содержится примерно 0,1 %.

Особенности строения глюкозы

1. Состав глюкозы выражается формулой: С6Н12O6, она принадлежит к многоатомным спиртам.

2. Если раствор этого вещества прилить к свежеосажденному гидроксиду меди (II), образуется ярко-синий раствор, как в случае глицерина.

Опыт подтверждает принадлежность глюкозы к многоатомным спиртам.

3. Существует сложный эфир глюкозы, в молекуле которого пять остатков уксусной кислоты. Из этого следует, что в молекуле углевода пять гидроксильных групп. Этот факт объясняет, почему глюкоза хорошо растворяется в воде и имеет сладкий вкус.

Если раствор глюкозы нагреть с аммиачным раствором оксида серебра (I), то получится характерное «серебряное зеркало».

Шестой атом кислорода в молекуле вещества входит в состав альдегидной группы.

4. Чтобы составить полное представление о строении глюкозы, надо знать, как построен скелет молекулы. Поскольку все шесть атомов кислорода входят в состав функциональных групп, следовательно, атомы углерода, образующие скелет, соединены друг с другом непосредственно.

5. Цепь атомов углерода прямая, а не разветвленная.

6. Альдегидная группа может находиться только в конце неразветвленной углеродной цепи, и гидроксильные группы могут быть устойчивы, находясь лишь у разных атомов углерода.

7. Глюкоза одновременно и альдегид, и многоатомный спирт: она альдегидоспирт..

16.Диеновые углеводороды, их химическоестроение, свойства, получение системы Диены - органические соединения, содержащие две двойных связи углерод-углерод. В зависимости от взаимного расположения двойных связей диены подразделяются на три группы: сопряженные диены, в которых двойные связи разделены одинарной (1,3-диены), аллены с

кумулированными двойными связями (1,2-диены) и диены с изолированными двойными связями, в которых двойные связи разделены несколькими одинарными.
Низшие диены - бесцветные легкокипящие жидкости (температуры кипения изопрена - 34 °C, 2,2-диметил-1,3-бутадиена - 68.78 °C, 1,3- циклопентадиена - 41.5 °C).

Диеновые углеводороды различаются расположением двойных связей, такое расположение вследствие эффектов сопряжения связей сказывается на их реакционной способности. Существуют три класса диенов:
Аллены - диены с кумулированными связями, замещённые производные пропадиена-1,2 H2C=C=CH2
Сопряжённые диены или 1,3-диены - замещённые производные бутадиена-1,3 CH2=CH–CH=CH2
Изолированные диены, в которых двойные связи располагаются через две и более простых связи С–С
Диеновые углеводороды легко полимеризуются. Реакция полимеризации диеновых углеводородов лежит в основе синтеза каучука. Вступают в реакции присоединения (гидрирование, галогенирование, гидрогалогенирование.
Натуральный каучук представляет собой полимер изопрена, который в большинстве своем содержится в млечном соке гевеи и многих других растений. Основными физическими и химическими свойствами этого эластомера является его растворимость в углеводородах и их производных, нерастворимость в воде и спиртах. При комнатной температуре, как правило, природный каучук присоединяет кислород, вследствие чего происходит «старение» материла, в связи с чем, уменьшается и его эластичность и прочность.
Первым синтетическим каучуком, имевшим промышленное значение, был полибутадиеновый (дивиниловый) каучук, производившийся синтезом по методу С. В. Лебедева (анионная полимеризация жидкого бутадиена в присутствии натрия), однако из-за невысоких механических качеств нашёл ограниченное применение.
Основные типы синтетических каучуков:
Изопреновый
Бутадиеновый каучук
Бутадиен-метилстирольный каучук
Бутилкаучук (изобутилен-изопреновый сополимер) Этилен-пропиленовый (этилен-пропиленовый сополимер) Бутадиен-нитрильный (бутадиен-акрилонитрильный сополимер) Хлоропреновый,

17. Дисперсные системы. Коллоидно-дисперсные системы

В природе и технике часто встречаются дисперсные системы, в которых одно вещество равномерно распределено в виде частиц внутри другого вещества.

В дисперсных системах различают дисперсную фазу - мелкораздробленное вещество идисперсионную среду - однородное вещество, в котором распределена дисперсная фаза. Например, в мутной воде, содержащей глину, дисперсной фазой являются твердые частички глины, а дисперсионной средой - вода; в тумане дисперсная фаза - частички жидкости, дисперсионная среда - воздух; в дыме дисперсная фаза -- твердые частички угля, дисперсионная среда - воздух; в молоке - дисперсная фаза - частички жира, дисперсионная среда - жидкость и т. д.

К дисперсным системам относятся обычные (истинные) растворы, коллоидные растворы, а также суспензии и эмульсии. Они отличаются друг от друга прежде всего размерами частиц, т. е. степенью дисперсности (раздробленности).

Системы с размером частиц менее 10-9 м представляют собой - истинные растворы, состоящие из молекул или ионов растворенного вещества. Их следует рассматривать как однофазную систему. Системы с размерами частиц больше 10-7 м - это грубодисперсные системы - суспензии и эмульсии.

Суспензии - это дисперсные системы, в которых дисперсной фазой является твердое вещество, а дисперсионной средой - жидкость, - причем твердое вещество практически нерастворимо в жидкости. Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость, в которой вещество не растворяется, и хорошо взболтать (например, взбалтывание глины в воде). Со временем частички выпадут на дно сосуда. Очевидно, чем меньше частички, тем дольше будет сохраняться суспензия.

Эмульсии - это дисперсные системы, в которых и дисперсная фаза и дисперсионная среда являются жидкостями, взаимно не смешивающихся. Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Примером эмульсии является молоко, в котором мелкие шарики жира плавают в жидкости. Суспензии и эмульсии - двухфазные системы.

Коллоидные системы

Коллоидные растворы - это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 10-9 м до 10-7 м. Как видно, коллоидные растворы по размерам частиц являются промежуточными между истинными растворами и суспензиями и эмульсиями. Коллоидные частицы обычно состоят из большого числа молекул или ионов.

Суспензия - смесь веществ, где твёрдое вещество распределено в виде мельчайших частиц в жидком веществе во взвешенном состоянии. Суспензия - это грубодисперсная система с твёрдой дисперсной фазой и жидкой дисперсионной средой. Обычно частицы дисперсной фазы настолько велики (более 10 мкм), что оседают под действием силы тяжести (седиментируют). Суспензии, в которых седиментация идёт очень медленно из-за малой разницы в плотности дисперсной фазы и дисперсионной среды, иногда называют взвесями. В концентрированных суспензиях легко возникают дисперсные структуры. Типичные суспензии - пульпы, буровые промывочные жидкости, цементные растворы, эмалевые краски. Широко используются в производстве керамики. 18. Железо, положение в периодической системе, строение атома Типичные степени окисления железа +2 и +3. Степень окисления +2 проявляется за счет потери двух 4s-электронов. Степень окисления +3 соответствует также при потере еще одного Зd-электрона, при этом Зd-уровень оказывается заполненным наполовину; такие электронные конфигурации относительно устойчивы.

Физические свойства. Железо типичный металл, образует металлическую кристаллическую решетку. Железо проводит электрический ток, довольно тугоплавко, температура плавления 1539С. От большинства других металлов железо отличается способностью намагничиваться.

Химические свойства. Железо реагирует со многими неметаллами:

Образуется железная окалина смешанный оксид железа. Его формулу записывают также так: FeОFe2О3.

Реагирует с кислотами с выделением водорода:

Вступает в реакции замещения с солями металлов, расположенных правее железа в ряду напряжений:

Соединения железа. FeО основной оксид, реагирует с растворами кислот с образованием солей железа (II). Fe2О3 амфотерный оксид, реагирует также с рас творами щелочей.

гидроксиды:

Сплавы железа. Современная металлургическая промышленность производит железные сплавы разнообразного состава.

Все железные сплавы разделяются по составу и свойствам на две группы. К первой группе относятся различные сорта чугуна, ко второй различные сорта стали.

Чугун, предназначенный для переработки в сталь , называют передельным чугуном. Он содержит от 3,9 до 4,3% С, 0,31,5% Si, 1,53,5% Мn, не более 0,3% Р и не более 0,07% S. Чугун, предназначенныйдля получения отливок, называется литейным чугуном, В доменных печах выплавляются также ферросплавы, применяемые преимущественно в производстве сталей в качестве добавок. Ферросплавы имеют, по сравнению с передельным чугуном, повышенное содержание кремния (ферросилиций), марганца (ферромарганец), хрома (феррохром) и других элементов.

Общие способы получения металлов.

Металлы находятся в природе преимущественно в виде соединений. Только металлы с малой химической активностью (благородные металлы) встречаются в природе в свободном состоянии (платиновые металлы, золото, медь, серебро, ртуть). Из конструкционных металлов в достаточном количестве имеются в природе в виде соединений лишь железо, алюминий, магний. Они образуют мощные залежи месторождений относительно богатых руд. Это облегчает их добычу в больших масштабах.

Поскольку металлы в соединениях находятся в окисленном состоянии (имеют положительную степень окисления), то получение их в свободном состоянии сводится к процессу восстановления:

Этот процесс можно осуществить химическим или электрохимическим путем.

При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (II), а также водород, активные металлы, кремний. С помощью оксида углерода (II) получают железо (в доменном процессе), многие цветные металлы (олово, свинец, цинк и др.):

Восстановление водородом используется, например, для получения вольфрама из оксида вольфрама (VI):

19. Понятие о жесткости воды. Борьба . Жесткость воды – это совокупность свойств, обусловленных содержанием в воде катионов кальция и магния. Анионами растворимых солей кальция и магния могут быть гидрокарбонат-ионы, сульфат-ионы и хлорид-ионы. Различают временную (карбонатную) и постоянную жесткость.

Временная жесткость обусловлена содержанием в воде гидрокарбонатов кальция и магния. Временная жесткость легко устраняется кипячением:

Постоянная жесткость обусловлена наличием в воде сульфатов, хлоридов и других солей кальция и магния. Постоянную жесткость можно устранить, используя следующие способы.

а) Известково-содовый способ – к воде добавляют смесь гашеной извести и соды. При этом временная жесткость воды устраняется гашеной известью, а постоянная – содой:

б) Катионитный способ – воду пропускают через колонку, заполненную катионитом (катиониты – твердые вещества, содержащие в своем составе подвижные катионы, способные обмениваться на ионы внешней среды) На катионите задерживаются ионы кальция и магния, а в раствор переходят ионы натрия, в результате чего жесткость воды уменьшается:

Общее содержание кальция в организме человека в среднем составляет 1,9% от общей массы тела, при этом 99% всего количества приходится на долю скелета и лишь 1% содержится в остальных тканях и жидкостях организма. Суточная потребность в кальции для взрослого человека 0,45-1,2 г. Кальций участвует во всех жизненных процессах организма. Нормальная свертываемость крови происходит только в присутствии солей кальция. Кальций играет важную роль и в нервно-мышечной возбудимости организма.

20.Жиры как сложные эфиры глицерина и карбоновых кислот, их состав и свойства. Жиры, или триглицериды (где ацил – остаток карбоновой кислоты -C(O)R)- природныеорганическиесоединенияполныесложные,

эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

В состав природных триглицеридов входят остатки насыщенных

(предельных) кислот(пальмитиновойC15H31COOH, стеариновой C17H35COOH и др.) и ненасыщенныхнепредельныхкислот() (олеиновойC17H33COOH, линолевойC17H31COOH, линоленовой

C15H29COOH и др.).

Жидкие жиры превращают в твердые путем реакции гидрогенизации (каталитическогогидрирования). При этомводородприсоединяетсяпо двойной связи, содержащейся в углеводородном радикале молекул масел.

21.изомерия органических соединений ее виды. Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стерео-изомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Структурная изомерия
Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие (начиная от вкуса и запаха и кончая лекарственным действием) резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов - обмена веществ.

22.искусственные волокна на примере цнллофана и вискоза. – это химические волокна, получаемые из природных полимеров, главным образом целлюлозы, получаемой из дерева и соломы. Ткани из искусственных волокон, также как и из натуральных, обладают высокими гигиеническими и иными качествами.

Вискозные ткани изготавливаются исходя из их назначения. Им можно придать внешний вид хлопка, льна, шерсти или шелка. Кроме того, вискоза применяется для прядения вискозных неволокнистых изделий (целлюлозной пленки, целлофана), а также для производства искусственной кожи (кирзы). Вискоза обладает некоторыми достоинствами по сравнению с традиционными натуральными тканями. Так, вискоза лучше впитывает влагу, чем хлопок. Изделия из вискозы обладают приятным шелковистым блеском, при этом легко окрашиваются и обладают высокой светостойкостью (в отличие от шелка). Из недостатков необходимо назвать сильную сминаемость, высокую степень усадки и невысокую прочность (особенно во влажном состоянии). Поэтому стирать вискозу необходимо в щадящем режиме. Отжимать лучше вручную и не сильно, либо вообще не отжимать, а сразу вешать сушиться. Гладить ее рекомендуется в таком же режиме, как и шелк.

Вискозное волокно занимает первое место среди химических волокон по объему производства. Вискоза производится из жидких растворов природной целлюлозы: из древесины ели, сосны, стеблей некоторых растений, из отходов переработки хлопкового волокна. Остатки еловой щепы и хлопкового пуха обрабатывают раствором щелочи (едкий натр), получают щелочную целлюлозу, которую затем обрабатывают сероуглеродом и полученный растров продавливают через фильеры - пластины с мельчайшими отверстиями - получают струйки материала, которые затвердевают и образуют элементарные нити. Ученые России предвидели блестящую будущность вискозного волокна.

Свойства

Вискозное волокно является самым универсальным из химических волокон, оно приближено к хлопковому. Ткань из вискозы на ощупь мягкая и приятная. Она образует красивые складки. Волокно имеет рыхлую структуру, напоминает шелк по внешнему виду. Вискозу также отличает крайне высокая гигроскопичность. Вискоза впитывает в два раза больше влаги, чем, например, хлопок. Ткань из вискозы очень легко окрашивается в самые яркие цвета. При увлажнении чистая вискоза становится менее прочной, однако, эта проблема полностью решается вплетением специальных укрепляющих волокон. Плотность нетканого полотна из вискозы может варьироваться от 1,53 г/смі до 4,5 г/смі. Эластичность вискозы не превышает 2−3%. Вискозная нетканка не теряет своих свойств при нагревании вплоть до 150 °C. Вискозное волокно очень хорошо сочетается с другими волокнами, что позволяет улучшать различные свойства материи: крепкость, мягкость, гигроскопичность. Вискоза не электризуется. «Зеленые» свойства

23 .кетоны состав свойства способы получения и применения: Способы получения кетонов

Кетоны могут быть получены окислением алкенов (кислородом в присутствии солей палладия и озоном), спиртов и гидратацией алкинов. Промышленное значение имеет метод гидроформилирования алкенов (оксосинтез).

1. Из спиртов. Дегидрированием спиртов получают многие альдегиды и кетоны, но в настоящее время процесс сохранил свое значение только для получения формальдегида (катализатор Cu). Промышленным способом получения является окисление спиртов. В качестве окислителей применяют K2Cr2O7/разб. H2SO4, Cr2O3/разб. H2SO4. Окислением первичных спиртов получают альдегиды, вторичных – кетоны.

Белки – это высокомолекулярные азотсодержащие органические соединения, построенные из остатков α-аминокислот (АК ).

Белки также называют протеинами (греч. protos – первый, важнейший). Белкам принадлежит решающая роль во всех процессах жизнедеятельности, они не встречаются в неживой природе.

Живая природа обладает рядом свойств, отличающих ее от неживой природы: это

1) способность живых организмов к воспроизводству себе подобных;

2) сократимость, движение;

3) высокий уровень структурной организации;

4) способность к эффективному преобразованию и использованию энергии;

5) обмен с окружающей средой и саморегуляция химических превращений.

Все эти свойства живой природы в большей мере обусловлены наличием в ней белков. Таким образом, белки составляют основу и структуры, и функций живых организмов .

Физико-химические свойства белков

    Высокая вязкость белковых растворов.

    Водные растворы белков имеют ясно выраженный коллоидный характер. Стабилизация коллоидных растворов белков обеспечивается зарядом частиц коллоидного раствора.

    Способность белковых растворов к набуханию в больших пределах.

    Растворы белков оптически активны, подвижны в электрическом поле, поглощают УФ-лучи при 280 нм.

    Благодаря наличию свободных СООН– и NH 2 – групп проявляют амфотерные свойства. Кроме того, белки имеют высокую Mr, обладают изоэлектрической и изоионной точкой, денатурируют и ренатурируют и т.д.

Элементный состав белков

В белках содержится до 55% – С ; 20-25% – О ; 16% – N , а также S , P , Mg и др. Доля азота в отличие от других элементов примерно одинакова и составляет 16% и содержание белка в материале часто определяют по количеству азота (сжигание по Къельдалю ). Исключение составляет белки-протамины, которые содержат ~30% N.

Mr – относительная молекулярная масса белков. Она очень велика: от 6000Да до нескольких миллионов Да.

Например, Mr инсулина = 5733 Да, а вируса табачной мозаики – 40 млн.Да

Мономеры или структурные звенья белков .

Их можно определить путем кислотного гидролиза белков. Мономерами белков являются α-АК L-ряда. Соединение АК в полипептидную цепь (ППЦ) происходит посредством ковалентных пептидных связей CO NH –.

Сложная структурная организация .

Некоторые природные, а также искусственно полученные полипептиды могут иметь большую Mr, но отнести их к белкам нельзя. Отличает их от белков уникальный признак, присущий только белкам – денатурация . При действии определенных веществ, так называемых детергентов , происходит потеря белком физико-химических свойств, а главное – биологической активности , при этом пептидные связи не разрываются. Таким образом, белки обладают сложной пространственной организацией.

Таковы характерные признаки белков.

Форма белковых молекул.

В природе белки встречаются как в виде нитей – фибрилл, так и в виде шариков – глобул. Иногда глобулярные и фибриллярные формы встречаются в виде комплексов (в мышечной ткани комплекс актина с миозином; в плазме крови содержится фибрилл белка – фибриноген, а также глобулы белка – альбумины и глобулины).

Работу выполнил выпускник 11 «А» класса Ежелый Игорь

Слайд 2

Белки, или протеины.

В переводе с греческого «протос» - первый, главный.

Находятся в протоплазме и ядре всех растительных и животных клеток, являются главными носителями жизни.

  • Альбумин (в курином яйце)
  • Гемоглобин (в крови человека)
  • Казеин (в коровьем молоке)
  • Миоглобин и миозин (в мышцах)

«Жизнь есть способ существования белковых тел»

(Ф. Энгельс)

Слайд 3

Белки простые сложные состоят только содержат белковую из аминокислот и небелковую части

альбумин, фибрин (липиды, углеводы, ионы металлов) – протеолипиды, гемоглобин

Понятие о белках и их классификация

Слайд 4

  • Белки – сложные высокомолекулярные природные соединения, построенные изα-аминокислот
  • Аминокислоты в белках связаны пептидными связями
  • Белки, как биополимеры, их состав, строение и функции в клетке
  • боковые радикалы одинаковых или различных аминокислот
  • Около 20 видов аминокислот входят в состав белков.

Состав белков

Слайд 5

Белки, как биополимеры, их состав, строение и функции в клетке

Слайд 6

Первичная структура белка

Степень организации белковых молекул

Последовательность аминокислот в полипептидной цепи, соединенных между собой пептидными связями

Слайд 7

Степень организации белковых молекул

Вторичная структура белка

Полипептидная цепь скрученная в спираль, удерживающуюся посредством образования водородных связей между остатками карбоксильной и аминной групп разных аминокислот

Слайд 8

  • Третичная структура белка
  • Спираль, в свою очередь, свернута в форме глобулы и шара.
  • Эта структура стабилизируется водородными, ионными, ковалентными,дисульфидными связями и гидрофобными взаимодействиями.

Каждому белку свойственна в определенной среде своя особая пространственная структура.

Слайд 9

Четвертичная структура белка представляет собой объединение в единую структуру нескольких молекул с третичной организацией (гемоглобин, инсулин)

Слайд 10

Строение белковой молекулы

Белки, как биополимеры, их состав, строение и функции в клетке

Слайд 11

Белки, как биополимеры, их состав, строение и функции в клетке

  • Типы белков
  • Структурные
  • Ферменты
  • Гормоны
  • Сократительные
  • Токсины
  • Запасные
  • Защитные
  • Транспортные
  • Типы белков
  • Слайд 12

    Классификация белков по выполняемым функциям

    • Типы белков
    • Ферменты
    • Гормоны
    • Транспортные
    • Защитные
    • Запасные
    • Токсины
    • Структурные
    • Структурная
    • Каталитическая
    • Регуляторная
    • Сократительные
    • Сократительная
    • Транспортная
    • Защитная
    • Запасная
    • Защитная
    • Кератин
    • Инсулин
    • Миозин
    • Гемоглобин
    • Антитела
    • Казеин
    • Токсины растений
    • Функции белков примеры
  • Слайд 13

    • Промежуточный контроль знаний
    • Изучите схему разнообразия аминокислот.
    • Чем отличатся аминокислоты друг от друга?
    • Охарактеризуйте обязательные компоненты аминокислот.
    • Укажите те участки аминокислот. Между которыми возникает пептидная связь.
    • Чем обусловлено большое разнообразие белков?
  • Слайд 14

    Промежуточный контроль знаний

    Заполните пропуски в таблице.

    Структурная организация белка

    1. Какие связи существуют в белковой молекуле?

    2. Благодаря каким связям белковая цепочка образует повороты?

    3. Какие связи лежат в основе третичной структуры белка?

    4. Какая структура обеспечивает разнообразие функций белка?

    Слайд 15

    Спасибо за внимание!

    Посмотреть все слайды

     

     

  • Это интересно: