→ Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения. Как подобрать конденсаторы для запуска электродвигателя Как подобрать пусковой конденсатор

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения. Как подобрать конденсаторы для запуска электродвигателя Как подобрать пусковой конденсатор

Двигатели, которые называют однофазными, имеют на статоре, как правило, две обмотки. Одна из них называется главной или рабочей, другая - вспомогательной или пусковой. Необходимость иметь две пространственно сдвинутые обмотки, пи-таемые сдвинутыми на 90 электрических градусов токами для получения пускового момента.

Двигатели называют однофазными, поскольку они изначально предназначены для питания от однофазной переменного тока.

Сдвиг токов во времени обеспечивают включением во вспомогательную фазу фазосдвигающего элемента - резистора или электрического конденсатора .

В двигателях с пусковым резистором (часто пусковая фаза выполняется с повышенным сопротивлением) магнитное поле эллиптическое; в двигателях с пусковым электрическим конденсатором поле ближе к круговому. Вспомогательная обмотка после разгона двигателя отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое. По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность.
В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обес¬печения кругового поля в номинальном режиме. При этом магнитное поле при пуске далеко от кругового и пусковой момент поэтому невелик. Для улучшения пусковых свойств параллельно рабочему конденсатору на пуска подключается пусковой элетрический конденсатор.

В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют разме¬щаемые на явновыраженных полюсах статора короткозамкну- тые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки.

Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пус-ковой фазы, с пусковым конденсатором, с рабочим конденса¬тором, с тем и другим, а также двигатели с экранированными полюсами.

Основные технические данные однофазных АД на напряжение 220 В: к, - кратность пускового тока; кп - кратность пускового момента; км - кратность максимального момента или перегрузочная способность двигателя.

Основные параметры электрических конденсаторов

Конденсатор является обладающим электрической емкостью концентратором энергии электрического поля и состоит из разделенных диэлектриком проводящих электродов - обкладок с выводами для присоединения к электрической цепи.

Емкость конденсатора есть отношение величины заряда конденсатора к разности потенциалов на его обкладках, кото¬рую сообщают конденсатору:
За еДиницу емкости в международной системе СИ принимают фараду (Ф) - емкость такого конденсатора, у кото¬рого потенциал возрастает на один вольт (В) при сообщении ему заряда в один кулон (Кл). Это очень большая величина, поэтому для практических целей используют более мелкие еди¬ницы емкости: микрофараду (мкФ), нанофараду (нф) и пикофа- раду (пФ):

1 ф = 106 мкФ = 109 нФ = 1012 пФ.

Емкость конденсатора зависит от площади обкладки конденсатора S, толщины слоя разделяющего их диэлектрика d и электрических свойств диэлектрика, характеризуемых диэлектрической проницаемостью е:

Номинальной называют емкость конденсатора, обозначен¬ную на его корпусе. Номинальные значения емкости стандартизованы.

МЭК (Публикация № 63) установлено семь предпочтительных рядов для значений номинальной емкости: ЕЗ; Е6; Е12; Е24; Е48; Е96; Е192. Цифры после буквы Е указывают на число номинальных значений в каждом десятичном интервале (дека¬де), которые соответствуют числам 1,0; 1,5; 2,2; 3,3; 4,7; 6,8 или числам, полученным путем умножения или деления на 10″, где п - целое положительное или отрицательное число. В условном обозначении номинальная емкость выражена в микрофа¬радах (мкФ) или в пикофарадах (пФ).

Для обозначения номинальных емкостей применяется система кодирования. Она состоит из трех или четырех знаков, включающих две или три цифры и букву. Буква кода из русского или латинского алфавитов обозначает множитель, состав¬ляющий значение емкости, и определяет положение запятой. Буквы П(р), Н(п), М(м), И(1), Ф(Р) обозначают множители 10~12, Ю-9, 10~6, Ю-3 и 1 соответственно для значений емкости, выра¬женной в фарадах.

Например, емкость 2,2 пФ обозначается 2П2 (2р2); 1500 пФ - 1Н5 (1п5); 0,1 мкФ - М1 (м1); 10 мкФ - ЮМ (Юм); 1 фара¬да — 1Ф0 (1F0).

Фактическое значение емкости может отличаться от номи-нального на величину допускаемого отклонения в процентах. Допускаемые отклонения изменяются в зависимости от типа и точности конденсатора в весьма широких пределах от ±0,1 до +80%.
Номинальным называют напряжение, указанное на конденсаторе или в документации на него, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинальное. Для многих типов конденсаторов с увеличением температуры (обычно 70…85 °С) допустимое напряжение снижается. Номинальные напряжения конденсаторов устанавливаются в соответствии с рядом (ГОСТ 9665-77): 1; 1,6; 2,5; 3,2; 4; 6,3; 10; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 350; 400; 450; 500; 630; 800; 1000; 1600; 2000; 2500; 3000; 4000; 5000; 6300; 8000; 10000 В.

Температурный коэффициент емкости (ТКЕ) определя¬ет относительное изменение емкости (в миллионных долях) от температуры при изменении ее на 1 °С.

Тангенс угла потерь (tg8) характеризует потери электри-ческой энергии в конденсаторе. Значения тангенса угла потерь у полистирольных и фторопластовых конденсаторов находятся в пределах (Ю…15)10~4, поликарбонатных (15…25)Ю~4, оксид¬ных 5…35%, полиэтилентерефталатных 0,01…0,012. Величина, обратная тангенсу угла потерь, называется добротностью кон-денсатора.

Сопротивление изоляции и ток утечки. Эти параметры характеризуют качество диэлектрика и используются при рас¬четах высокоомных, времязадающих и слаботочных цепей. Наиболее высокое сопротивление изоляции у фторопластовых, по- листирольных и полипропиленовых конденсаторов, несколько ниже у высокочастотных керамических, поликарбонатных и лавсановых конденсаторов.

Для маркировки конденсаторов постоянной емкости применяют букву К (конденсатор постоянной емкости) и цифры, определяющие вид диэлектрика.

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют .

Варианты схем включения — какой метод выбрать?

В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором .

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или .

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с , когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами . Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Чтобы установить , необходимо кроме обладания определенными знаниями оценить все плюсы и минусы данного вида энергоснабжения помещений.

Наличие трехжильной проводки в частном доме предполагает использование , которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать .

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

Выводы :

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное видео о том, как подключить однофазный двигатель через конденсатор

Питание обычного синхронного и асинхронного двигателя осуществляется от сети переменного напряжения. Существуют также и «необычные» движки, например, питающиеся от бортовой сети транспортных средств или от специальных генераторов. Принцип их работы такой же, но частота питающего напряжения, как правило, заметно больше 50 Гц.

В электродвигателе переменного тока статор обеспечивает пространственное перемещение магнитного поля. Без этого ротор не сможет начать вращение самостоятельно.

Роль конденсаторов в электроприводе

Если напряжение питания однофазное, с помощью конденсатора можно получить в статоре перемещение магнитного поля. Для этого в нем нужна дополнительная обмотка. Она подключается через конденсатор. Величина его емкости прямо пропорционально влияет на пусковой крутящий момент. Если измерять его величину (ось ординат) соответственно увеличению емкости (ось абсцисс), получится кривая. С определенного значения величины емкости приращение момента станет все меньше и меньше.

Величина емкости, начиная с которой приращение крутящего момента заметно уменьшается, будет оптимальной для пуска данного мотора. Но для разогнанного движка и его продолжительной работы пусковой конденсатор всегда слишком велик своей емкостью. Для поддержания стабильной работы электродвигателя применяется рабочий конденсатор. Его емкость меньше, чем у пускового. Правильно подобрать рабочий конденсатор также можно экспериментально.

Как определить оптимальную величину емкости

Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.

При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются - пусковые конденсаторы.

Расчет рабочей емкости

Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.

  • Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.

Подбор пусковой емкости

Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно .

После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.

Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.

Металлобумажные и пленочные конденсаторы

Величина 220 В напряжения сети переменного тока, используемая для технических характеристик двигателей, соответствует действующему значению. Но при нем амплитудное значение напряжения составит 310 В. Именно до этого уровня будет заряжаться конденсатор электродвигателя. Поэтому номинальное напряжение пускового и рабочего конденсатора выбирается с запасом и составляет не менее 350 вольт. Наиболее надежными разновидностями их являются металлобумажные и металлопленочные конденсаторы.

Но их размеры велики, а емкости одного конденсатора недостаточно для большинства промышленных движков. Например, для движка мощностью 1 кВт только рабочая емкость получается равной 109,1 мкФ. Следовательно, пусковая емкость получится более чем в 2 раза больше. Чтобы выбрать конденсатор нужной емкости, например, для движка 3 кВт при наличии уже выбранного экземпляра для мощности 1 киловатт, его можно взять за основу. В этом случае один конденсатор заменяется тремя, подключенными параллельно.

Для работы движка нет разницы, какие конденсаторы - один или три - задействованы при включении. Но выбирать лучше три. Этот вариант отличается экономичностью, несмотря на большее число соединений. Перенапряжение повредит только один из трех. И его замена обойдется дешевле. Один большой конденсатор при замене будет отличаться существенно более высокой ценой.

Если нужен оптимальный по размеру экземпляр, его подбирают в таблице по приведенным данным.

Электролитические конденсаторы

Рассматриваемые металлопленочные конденсаторы стабильны, надежны и долговечны при соблюдении правильных условий эксплуатации, среди которых важнейшим параметром является напряжение. Но в электросети в результате коммутации потребителей, а также по другим причинам возможны перенапряжения. Если происходит пробой изоляции обкладок, они становятся непригодными для дальнейшей работы. Но подобное происходит не часто и основной проблемой применения этих моделей являются габариты.

Более компактной альтернативой могут быть электролитические конденсаторы (т.н. электролиты). Они имеют существенные отличия своими меньшими размерами и структурой. Поэтому могут заменить несколько единиц металлобумажных на 1 электролит. Но свойства их структуры ограничивают продолжительность срока службы. Хотя есть и положительная сторона - самовосстановление после пробоя. Продолжительная работа электролитов на переменном токе невозможна. Он нагреется и, в конце концов, разрушится, по крайней мере, предохранительный клапан. А то и корпус.

Чтобы предотвратить подобные происшествия, необходимо подсоединить диоды. Подключение пускового конденсатора с диодами делается, как показано далее на изображении. Но это не значит, что можно применить любую из моделей электролитов с напряжением 350 В или больше. Уровень пульсаций и частота их строго регламентированы. Если происходит превышение этих параметров, начинается нагрев. Конденсатор может выйти из строя. Для запуска и работы двигателей изготавливаются специальные электролиты с диодами внутри. Необходимо применять для движков только такие модели.

Есть 2 типа однофазных асинхронных двигателей - бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством - центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки - основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема - с конденсатором в цепи питания пусковой обмотки - хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором - если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя - установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В . Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

добавил комментарий на ютубе:

всё несколько проще. В любом вменяемом учебнике, с названием “Электрические машины”, в конце раздела, посвящённого теории асинхронного двигателя, рассматривается вопрос работы асинхронника в однофазном режиме, с различными схемами подключения обмоток. Там же приводятся формулы расчёта ёмкости рабочих и пусковых конденсаторов. Точный расчёт, довольно сложен – нужно знать специфические параметры двигателя. Упрощённая методика расчёта имеет следующий вид: Звезда Сраб = 2800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); Треугольник Сраб = 4800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); где, Сраб – ёмкость рабочего конденсатора, мкФ; Спуск – ёмкость пускового конденсатора, мкФ; Iном – номинальный фазный ток двигателя при номинальной нагрузке, А; Uсет – напряжение сети, к которой будет подключён двигатель, В. Пример расчета. Исходные данные: имеем асинхронный электродвигатель – 4 кВт; схема соединения обмоток –Δ / Y напряжение U – 220 / 380 В; ток I – 8 / 13,9 А. По токам мотора: 8 А – это фазный ток (т.е. ток каждой из трёх обмоток) двигателя на треугольнике и звезде, и он же линейный ток на звезде; 13,9 А – это линейный ток двигателя на треугольнике (в расчётах нам не понадобится). Ну, и, собственно, сам расчёт: Звезда Сраб = 2800 (Iном / Uсет) = 2800 (8 / 220) = 101,8 мкФ Спуск = Сраб 2÷3 = 101,8 2÷3 = 203,6÷305,4 мкФ (при тяжёлых условиях запуска – 509 мкФ) Треугольник Сраб = 4800 (Iном / Uсет) = 4800 (8 / 220) = 174,5 мкФ Спуск = Сраб 2÷3 = 174,5 2÷3 = 349÷523,5 мкФ (при тяжёлых условиях запуска – 872,5 мкФ) Тип рабочего конденсатора – полипропиленовый (импортный СВВ-60 или отечественный аналог – ДПС). Напряжение кондёра не меньше 400 В по переменке (пример маркировки: АС ~ 450 В), для советских бумажных МБГО рабочая напруга должна быть не меньше 500 В, если меньше – соединять последовательно, но это потеря ёмкости, естественно – так много кондёров набирать придётся). Для пусковых конденсаторов лучше, конечно, тоже использовать полипропиленовые или бумажные, но это будет дорого и громоздко. Для удешевления, можно взять полярные электролитические (это те, у которых на корпусе есть « + » и/или « – »), предварительно сделав из двух полярных электролитов, один неполярный, соединив два конденсатора минусами вместе (можно соединять и плюсами, но у некоторых конденсаторов минус соединён с корпусом этих кондёров и если соединять их плюсами, то придётся эти кондёры изолировать не только от окружающего “железа”, но и друг от друга, а иначе КЗ), а оставшиеся два плюса оставить для подключения к обмоткам мотора (не забываем, что при последовательном соединении двух одинаковых конденсаторов их суммарная ёмкость уменьшается в два раза, а рабочее напряжение в два раза увеличивается – например, соединив последовательно (минус к минусу) два конденсатора 400 В 470 мкФ, получим один неполярный кондёр с рабочим напряжением 800 В и ёмкостью 235 мкФ). Рабочее напряжение каждого из двух последовательно соединённых электролитов, должно быть не меньше 400 В. Нужную пусковую ёмкость набираем (при необходимости) параллельным соединением таких сдвоенных (т.е. уже неполярных) электролитов – при параллельном соединении конденсаторов, рабочее напряжение остаётся неизменным, а ёмкости суммируются (так же, как и при параллельном соединении аккумуляторов). Можно и не изобретать этот “колхоз” со сдвоенными электролитами – есть готовые пусковые неполярные электролиты – например, тип CD-60. Но, в любом случае, с электролитами (и неполярными, и уж тем более с полярными) есть одно НО – такие конденсаторы в сеть 220 В можно включать (полярные лучше вообще не включать) только на время запуска двигателя – использовать электролиты как рабочие конденсаторы нельзя – взорвутся (полярные почти сразу, неполярные чуть позже). С рабочим конденсатором на треугольнике двигатель теряет 25-30 % свой трёхфазной мощности, на звезде 45-50 %. Без рабочего конденсатора, в зависимости от схемы соединения обмоток, потеря мощности составит более 60 %. И ещё один момент по кондёрам: в youtube немало видео, где народ подбирает рабочие конденсаторы по звуку мотора на холостом ходу (без нагрузки) и пугаясь повышенного гудения двигателя, уменьшает ёмкость рабочих конденсаторов до тех пор, пока это гул не снизится до более-менее приемлемого. Это неправильный подбор рабочего кондёра – так занижается мощность двигателя под нагрузкой. Да, повышенное гудение мотора это не очень хорошо, но не слишком опасно для обмоток, если ёмкость рабочего конденсатора не завышена. Дело в том, что в идеале, ёмкость рабочего конденсатора должна плавно меняться, в зависимости от нагрузки двигателя – чем больше нагрузка, тем больше должна быть ёмкость. Но сделать такую плавную регулировку ёмкости довольно сложно, это и дорого, и громоздко. Поэтому подбирают такую ёмкость, которая будет соответствовать какой-то конкретной нагрузке мотора – как правило, номинальной. При соответствии ёмкости рабочего конденсатора расчётной нагрузке двигателя, магнитное поле статора круговое и гудение минимально. Но когда ёмкость рабочего конденсатора превышает нагрузку мотора, магнитное поле статора становится эллиптическим, пульсирующим, неравномерным, и вот это пульсирующее магнитное поле и вызывает гудение, из-за неравномерного вращения ротора – ротор, вращаясь в одном направлении, попутно дёргается то вперёд, то назад, и при повышенных токах в обмотках, двигатель развивает меньшую мощность. Поэтому если мотор гудит на средних нагрузках и на холостом ходу, то это не так страшно, а вот если гудение наблюдается при полной нагрузке, то это говорит о явно завышенной ёмкости рабочего кондёра. В этом случае, уменьшение ёмкости позволит снизить токи в обмотках двигателя и его нагрев, выровнять (“скруглить”) магнитное поле статора (т.е. уменьшить гудение) и повысить развиваемую мотором мощность. Но оставлять мотор в работе на холостом ходу длительное время с рабочим кондёром, рассчитанным на полную мощность двигателя, всё же не стоит – в этом случае на рабочем конденсаторе будет повышенное напряжение (до 350 В), а по обмотке, подключенной последовательно с рабочим конденсатором, будет протекать повышенный ток (на 30 % больше номинального – на треугольнике, и на 15 % - на звезде). При увеличении нагрузки на мотор, напряжение на рабочем кондёре и ток в последовательно соединённой с рабочим кондёром обмотке двигателя будут снижаться.

 

 

Это интересно: