→ Дыхательная цепь и синтез атф. Синтез атф в митохондрии клетки Синтез атф в клетке простое объяснение

Дыхательная цепь и синтез атф. Синтез атф в митохондрии клетки Синтез атф в клетке простое объяснение

АТФ-синтаза состоит из двух механизмов. Первый, F0, это электромотор, находящийся в клеточной мембране и превращающий энергию, запасенную в разности потенциалов по разные стороны клеточной мембраны. Липидная мембрана служит изолятором в этой электрохимической «батарейке»: через нее ионы не проходят. Разность потенциалов создается другими сложными механизмами в конечном счете из «сжигания» сахара в кислороде. Ион водорода H + втягивается во «впускной коллектор» и присоединяется к белковой дольке ротора. Ротор поворачивается за счет электростатических сил, а долька, достигшая «выхлопного коллектора» мотора, освобождается от иона каталитическим белком, и этот ион проваливается внутрь клетки, опять же за счет электростатических сил, стремящихся выровнять потенциал по обе стороны мембраны. Таким образом, электроэнергия сначала превращается в механическую энергию вращения молекулярного вала, присоединенного к ротору и уходящего вглубь клетки, к механизму синтеза, F1.
Механико-химический реактор F1 состоит из трех белковых долек, каждая из которых состоит из двух белковых молекул (их называют α-F1 и β-F1, а вал сделан из одной молекулы, обозначаемой γ-F1). Каждая долька может принимать две устойчивые пространственные конфигурации за счет взаимного межатомного притяжения - как обычный настенный выключатель оказывается в двух устойчивых положениях, хотя промежуточные положения неустойчивы. Одно из этих положений, однако, имеет более высокую энергию. Молекулы сдвигаются в конфигурацию с более высокой энергией за счет асимметрии вращающегося γ-вала, как будто бы «кулачком» на нем.
Когда к αβ-комплексу присоединяется АДФ и ион фосфата, равновесие нарушается, и молекула, как пружинка с запасенной энергией, перепрыгивает в состояние с меньшей энергией, а запасенная энергия тратится на сближение АДФ и фосфатного иона, в результате чего те соединяются в молекулу АТФ, в конечном счете уносящую этот запас энергии.
Вращение механизма можно увидеть в микроскоп, если присоединить к ротору в F0 специально изготовленную длинную светящуюся (флюоресцирующую) молекулу-стержень. В самом конце фильма можно увидеть реконструкцию этого потрясающего опыта Масасуке Ёсиды и врезку с данными, показывающими вращение ротора.
Интересно, что на нижнем конце ротора имеется еще один белок, δ-F1, который тоже умеет изменять конфигурацию в присутствии АДФ, исходного реагента для реакции. Когда АДФ вокруг реактора оказывается мало, этот белок меняет форму и заклинивает ротор, чтобы не расходовать электрохимическую энергию вхолостую, поскольку продвижение ионов H + через остановленный ротор невозможно.



2.2. Регуляция потоков восстановительных эквивалентов
Если два пути окисления: свободный и энергетически сопряженный- сосуществуют в одной и той же клетке, возникает проблема, как предотвратить утилизацию всех восстановительных эквивалентов по тому из них, который термодинамически более выгоден. Без сомнения, пространственное разграничение (компартментализация) метаболических процессов играет ведущую роль в решении этой проблемы. Так, например, дегидрогеназы основных субстратов локализованы в матриксе, так что восстановительные эквиваленты, питающие дыхательную цепь, образуются непосредственно внутри митохондрий и потому сами по себе недоступны для внешних систем свободного окисления. Кроме того, во внутренней митохондриальной мембране содержится несколько АцН-зависимых переносчиков, ответственных за аккумуляцию в матриксе тех субстратов, чьи дегидрогеназы имеются не только в митохондриях, но и в цитозоле. Если же дегидрогеназа данного субстрата локализована исключительно в цитозоле, то используются особые челночные механизмы, переносящие восстановительные эквиваленты из цитозоля в матрикс.
малат-аспартат-глутаматный челнок. Действие этой системы приводит к окислению внемитохондриального НАДН посредством НАД+-матрикса. В процессе участвуют два фермента, локализованные по обе стороны внутренней мембраны митохондрий, а именно малатдегидрогеназа и аспартат: глутама-таминотрансфераза. Кроме того, необходимы два переносчика: антипортер дикарбоновых кислот и глутамат/аспартат-антипортер. Последний использует энергию AjiH, так как он катализирует обмен аспартат 2 -/ (глутамат 2_ +Н +). В результате перенос гидрид-иона от НАДН+нар к НАД+вн оказывается сопряженным с перемещением одного иона Н + из цитозоля в матрикс.
Другой челночный механизм использует две глицерофосфатдегидрогеназы: цитозольную, зависящую от НАД, и митохондриаль-ную, восстанавливающую KoQ без участия НАД. Челночные системы тканеспецифичны. Например, малатный челнок очень активен в печени, но отсутствует в сердце, где митохондрии лишены дикарбоксилатного антипортера. Глицерофосфатный челнок резко активизируется тиреоидными гормонами.
Другим примером пространственного разделения окислительного обмена могут быть пероксисомы. Эти органеллы окружены мембраной, напоминающей по проницаемости внешнюю митохондриальную мембрану. Она не проницаема для белков, но легко пропускает низкомолекулярные вещества. Поглощение кислорода пероксисомами обусловлено действием уратоксидазы, оксидазы D-аминокислот и оксидазы а-оксикислот. Оксидазы пероксисом не конкурируют с ферментами сопряженного дыхания митохондрий, поскольку субстраты этих оксид аз окисляются без участия НАД(Ф) и дыхательной цепи. Токсический продукт реакции - пероксид водорода - немедленно разлагается внутри пероксисом каталазой, самым массовым белком этих органелл.

3.1. Н+-Пирофосфатсинтаза
В 1966 г. М. Балчевски и сотрудники описали образование неорганического пирофосфата хроматофорами Rhodospirillum rubrum под действием света. Позднее было найдено, что в темноте пирофосфат, подобно АТФ, энергизует мембрану хроматофоров. Опыты в группе автора показали, что гидролиз пирофосфата генерирует Агр на мембране хроматофоров, а также протеолипосом, содержащих очищенную пирофосфатазу Rh. rubrum. Затем Р. Нирен и М. Балчевски сообщили о синтезе АТФ за счет энергии гидролиза пирофосфата протеолипосомами, содержащими пирофосфатазу и Н+-АТФ-синтазу из Rh. rubrum. Протонофоры блокировали процесс. В хроматофорах был показан протонный контроль пирофосфатазной активности, которая возрастала в восемь раз при рассеянии ЛрН.
Перечисленные данные представляются достаточными для заключения, что мембранная пирофосфатаза хроматофоров Rh. rubrtim обладает активностью Н + -насоса, катализируя обратимое взаимопревращение энергии между ДцН и пирофосфатом. Следовательно, данный фермент может быть определен как Н+-пирофосфатсинтаза.
Механизм действия фермента и его молекулярные свойства остаются неясными. Известен лишь набор ингибиторов, подавляющих пирофосфатазную активность как мембранной, так и растворимой формы фермента. Это фторид, имидодифосфат, N-этилмалеимид и антибиотик Дио-9. Олигомицин не влияет на фермент. ДЦКД снижает активность пирофосфатазы в хроматофорах, но не в растворе и не в протеолипосомах. Образование А-ф протеолипосомами чувствительно к ДЦКД.
Казалось бы, функцией Н+-пирофосфатсинтазы в клетках Rh. rubrum должен быть синтез пирофосфата за счет энергии света (или
дыхания) либо генерация АцН за счет гидролиза пирофосфата. Однако в первом случае не ясна дальнейшая судьба образованного пирофосфата, который в клетках обычного типа расщепляется растворимой пирофосфатазой. Последнее необходимо, чтобы удерживать концентрацию пирофосфата на низком уровне и тем самым стимулировать АТФ-зависимые биосинтезы, сопровождающиеся образованием пирофосфата. Существуют, правда, исключения из правила о том, что пирофосфат немедленно расщепляется растворимой пирофосфатазой. У некоторых бактерий описан целый ряд синтетических процессов, утилизирующих энергию пирофосфата. Быть может, Rh. rubrum относится именно к этой категории микроорганизмов. В любом случае Н+-пирофосфат-синтазаRh. rubrum должна обладать важной биологической функцией. Ее активность в хроматофорах очень велика и соизмерима с таковой Н + -АТФ-синтазы.
Неожиданно высокая концентрация пирофосфата была обнаружена в клетках растений. У растений Н+-пирофосфатаза найдена в тонопласте и мембранах аппарата Гольджи.

3.2. Контроль протонного потенциала у бактерий у бактерий
Как уже отмечалось, многие бактерии располагают параллельными электрон-транспортными путями, одни из которых сопряжены с накоплением энергии, а другие - нет. Кроме того, свободное и сопряженное окисления могут быть последовательно включены в одну и ту же дыхательную цепь. Проблему «полезного разобщения» никогда не исследовали применительно к бактериям.
Интересный пример механизма, поддерживающего высокую ДцН по принципу саморегуляции, был выявлен в опытах с подвижными бактериями. Показано, что искусственно вызванные изменения ДцН воспринимаются бактерией как сигнал, регулирующий ее движение. Так, добавка разобщителя или исчерпание кислорода служат репеллентным сигналом, вызывающим изменение направления движения бактерии. Соответственно добавление Ог оказывается аттрактантным стимулом, благоприятным для линейного движения. Отмечено, что влияние кислорода на поведение бактерий (аэротаксис) проявляется лишь в тех случаях, когда концентрация Ог в среде влияет на ДрН.
Простейшее объяснение этих данных состоит в том, что бактерия располагает устройством, которое измеряет протонный потенциал и посылает соответствующий сигнал флагеллярному мотору, регулируя таким способом направление вращения_ жгутика: направление изменяется на противоположное, если Др,Н снижается, и сохраняется неизменным, если она растет. В результате клетка движется туда, где она может поддерживать более высокую Др,Н. Гипотетический механизм подобного типа, названный автором протометром, позволяет интегрировать множество благоприятных и неблагоприятных воздействий, отражающихся на энергетическом состоянии мембран.
Описан механизм, согласующий работу двух фотосистему хлоропластах и тем самым оптимизирующий продукцию Др,Н и НАДФН. Если фотосистема II работает слишком быстро, это приводит к восстановлению редокс-переносчика (предположительно PQ), включенного между двумя фотосистемами. Такой эффект некоторым способом активирует протеинкиназу, фосфорилирующую белок, который несет на себе хлорофилл антенны. Названный белок в его нефосфорилированном состоянии локализуется в основном в тилакоидах, упакованных в граны. Фосфорилирование увеличивает отрицательный заряд белков антенны, которые диффундируют из тилакоидов в мембраны стромы, где, как правило, локализована фотосистема I. В итоге фотосистема I получает больше хлорофилла антенны, а следовательно, и больше фотонов, чем фотосистема II. Активация фотосистемы I вызывает окисление PQH2, а значит, и торможение протеинкиназы. Непрерывно действующая протеинфосфатаза дефосфорилирует белок антенны и прекращает его дальнейшую утечку из тилакоидов в ламеллы стромы.

5.1. Осмотическая работа
(Na+, метаболит)-симпортеры. У алкалотолерантной V. algino-lyticus, располагающей Ыа+-НАДН-хинонредуктазой, обнаружены (Na + , метаболит)-симпортеры, ответственные за аккумуляцию 19 аминокислот и сахарозы.
Показано также, что накопление К + в клетках V. alginolyticus при щелочных рН поддерживается энергией Aif>, генерируемой Na + -НАДН-хинонредуктазой. Nа+-Зависимое накопление метаболитов в алкалофильных бациллах было описано в ряде сообщений. Однако остается неясным, как эти алкалофилы образуют Ajj,Na.
Нейтрофнльные бактерии, живущие при низких или умеренных концентрациях NaCl, обычно используют Н+, а не Na+ в качестве симпортируемого иона. Однако известны и исключения из этого правила. Так, пролин транспортируется вместе с Na+ в клетки Mycobacterium phlei, Salmonella typhimurium и E. coli.
Интересный «дуалистический» механизм импорта метаболита описан у Е. coli. Оказалось, что эта бактерия использует альтернативно Н+ или Na+ в качестве сопрягающего катиона при аккумуляции мелибиозы. Поглощение цитрата бактериями Klebsiella pneumoniaeосуществляется переносчиком, обеспечивающим симпорт цитрата 3- , 2Na + и 2Н+. Это означает, что движущей силой процесса должны быть Аг|э, pNa и ДрН.
А. Броди и сотрудникам удалось выделить (Na+, пролин)-сим-портер из М. phlei, который оказался белком массой в 20 кДа. Очищенный симпортер был реконструирован с фосфолипидами. Полученные протеолипосомы транспортировали пролин за счет Агр, образованной диффузией ионов К + . Аккумуляция пролина тормозилась протонофорами, снижавшими Дг|>, а также сульфгидриль-ными реагентами.
Описана также частичная очистка и реконструкция (Na+, acпартат)-симпортера из галофильной Halobacterium halobium. Вообще морские и галофильные микроорганизмы, подобно алкалофильным, обычно используют Na + , а не Н+ как симпортируемый ион. Это верно также и для внешней мембраны клеток высших животных, омываемой раствором с высокой концентрацией NaCl. Данное обстоятельство - еще одно свидетельство справедливости мнения о том, что кровь - «частичка океана в теле человека». Генераторами AjiNa на плазмалемме животных клеток служит Na+/K + -ATOa3a (в некоторых случаях также и Ыа+-АТФаза). Образованная AjiNa утилизируется различными переносчиками, транспортирующими в клетку аминокислоты, сахара, жирные кислоты и другие соединения. Ряд (Na+, метаболит)-симпортеров выделен и встроен в протеолипосомы.
Некоторые животные клетки содержат Н+-АТФазу во внешней мембране. В этих клетках также найдены (Н+, метаболит) -симпортеры.

Как известно, живые системы функционируют благодаря использованию различных видов энергии трансформированием их в энергию химических связей. В клетке химическая энергия запасается в виде так называемых «высокоэнергетических» метаболитов. Наиболее важным таким метаболитом, макроэргом, обеспечивающим энергией большинство энергозависимых процессов в клетке, является нуклеотидный коэфермент аденозинтрифосфат АТФ (рис.1). В молекуле АТФ цепочка из трех фосфатных остатков (α, β, γ) связана 5 ΄ -ОН-группой аденозин. Рибоза связана с α-фосфатом устойчивой фосфорноэфирной связью. Три фососфатных остатка связаны между собой менее устойчивыми фосфоангидридными связями. При физиологических значениях рН АТФ несет четыре отрицательных заряда. Изменение свободной энергии ΔG 0 гидролиза фосфоангидридных связей составляет 30-35 кДж/моль. В клетке, в физиологических условиях измение свободной энергии гидролиза АТФ еще выше и может доходить до 50 кДж/моль. Гидролиз АТФ в клетках сопровождается выделением свободной энергии, которая расходуется на выполнение эндергонических (энергозатратных) процессов, таких как биосинтез, движение, транспорт и др. Соответственно, синтез АТФ является высоко эндергонической реакцией, поэтому он должен сопрягаться высоко экзергоническим процессом. Молекула АТФ является самым важным и универсальным энергетическим посредником, которая обеспечивает генерирование химической энергии и ее использование для выполнения биологических функций у всех организмов. Остальные нуклеозидтрифосфатные коэферменты, химически похожие на АТФ (ГТФ, ЦТФ, УТФ) выполняют в метаболических процессах другие функции.

Рис.1. Структура молекулы АТФ (кольман,125)

В ходе эволюции сформировались два важных способа синтеза АТФ, которые реализуются в живых клетках. Наиболее эффективный способ синтеза АТФ – это использование энергии градиента электрохимического потенциала биологических мембран для образования АТФ из АДФ и неорганического фосфата. Энергия для создания такого градиента возникает в результате окислительно-восстановительного процесса в результате окисления химических субстратов (окислительное фосфорилирование) или под действием световой энергии (фотофосфорилирование).

Второй, эволюционно более ранний способ синтеза АТФ осуществляется в анаэробных условиях. В этом случае перенос фосфатной группы на АТФ осуществляется через метаболит с высоким потенциалом переноса фосфатных групп. В качестве примера можно привести реакцию синтеза АТФ из креатинфосфата в мышечных клетках.

По способу преобразования энергии организмы (клетки) подразделяются на большие 2 группы : автотрофы и гетеротрофы. Автотрофы для синтеза АТФ используют энергию электромагнитных (световых) волн или. Гетеротрофы – для синтеза АТФ используют энергию химических связей органических субстратов.

Синтез АТФ у автотрофных организмов мы подробно будем говорить на лекции, посвященному фотосинтезу. Сейчас приступим к рассмотрению процесса синтеза АТФ у аэробных организмов - окислительного фосфорилирования. Впервые синтез АТФ, сопряженный с внутриклеточным дыханием был обнаружен в начале 30-ых годов 20 века российским биохимиком В. А. Энгельгардом. Другой россиянин, В.А. Белицер, в 1939 году предположил, что окислительное фосфорилирование АДФ сопряжено с переносом электронов в дыхательной цепи. Американские ученые А.Ленинджер и Е. Кеннеди в 1949 году показали, что процесс окислительного фосфорилирования протекает в митохондриях.

Из курса цитологии вам известно, что митохондрии – это органеллы клетки палочкообразной или округлой формы, сравнительно больших размеров (до 2-3 мкм). Митохондрия окружена двойной элементарной мембраной, толщина каждой мембраны около 7-8 нм. Митохондрия имеет два внутренних отсека (компартмента): пространство между внутренней и внешней мембраной (межмембранное пространство ) и матрикс , пространство, ограниченное внутренней мембраной. Внутренняя мембрана образует многочисленные складки и выступы (кристы ), за счет чего достигается увеличение поверхности внутренней мембраны (рис.2). В митохондриях за счет окислительной деградации питательных веществ синтезируется большая часть необходимого клетке АТФ.


Рис. 2. Схема общей организации митохондрии 1 - внешняя мембрана; 2 - внутренняя мембрана; 3 - впячивания внутренней мембраны - кристы; 4 - места впячиваний, вид с поверхности внутренней мембраны

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление до СО 2 и Н 2 О, сопряженнное с синтезом АТФ. Соответственно, в митохондриях локализованы следующие метаболические процессы: 1) превращение топливных субстратов в ацетил-КоА 2) восстановление НАДН и ФАДН 2 в цикле Кребса 4) синтез АТФ в дыхательной цепи (рис. 3). Реакции двух первых процессов локализованы в матриксе, а дыхательная цепь располагается на внутренней мембране митохондрий. На этой мембране митохондрии находятся молекулярные переносчики электронов и ферменты, составляющие дыхательную (электронно-транспортную ) цепь. Компоненты дыхательной цепи осуществляют перенос электронов от НАДН или восстановленной формы убихинона QН 2 на молекулярный кислород. Вследствие большой разницы окислительно-восстановительных потенциалов (ОВП) доноров (НАДН 2 и QН 2) и акцептора (О 2), реакция переноса электронов является высоко экзергонической. Большая часть освобождающейся энергии расходуется на создание градиента концентрации протонов, которую фермент АТФ-синтаза использует для образования молекулы АТФ.

Основные компоненты ЭТС митохондрий следующие: комплекс 1 (НАДН: убихинон –оксиредуктаза или НАДН-дегидрогеназа); комлекс 11 (сукцинат: убихинон-оксиредуктаза или сукцинатдегидрогеназа); комплекс 111 (убихинол: цитохром с – оксиредуктаза); комплекс 1У (цитохром с: кислородоксиредуктаза); цитохром с; АТФ- синтетаза; АДФ – АТФ – транслоказа; убихинон..

Перечисленные компоненты ЭТС на мембране митохондрий располагаются в следующих стехиометрических соотношениях: комплекс 1: комплекс 2: комплекс 3: комплекс 4 как 1: 2: 3: 6. На каждый комплекс приходится по 1 молекуле АТФ-азы и по 3-5 молекул АДФ-АТФ – транслоказы.

Перенос электронов по дыхательной цепи. Электроны, окисляющие кислород, проходят, по меньшей мере, десять промежуточных окислительно-восстановительных систем, большинство из которых представлены простетическими группами в комплексах 1, 111, 1У. Молекулярные переносчики (НАДН, флавопротеины, содержащие ФАД и ФМН в качестве простетических групп, убихинон) акцептируют и отдают по 2 электрона. Негемовые железосерные белки и цитохромы, содержащие порфириновые простетические группы, переносят по одному электрону (рис. 3).

Рис.3 . Поток электронов через три главных ферментативных комплекса при переносе электронов от НАД·Н к О 2

1 - НАД·Н-дегидрогеназный комплекс; 2 - с 1 -комплекс; 3 - цитохромоксидазный комплекс; 4 - убихинон; 5 - цитохром с; 6 - матрикс митохондрии; 7 - внутренняя митохондриальная мембрана; 8 - межмембранное пространство

Комплекс 1 катализирует перенос двух электронов от НАДН к убихинону и он также способен транспортировать через мембрану протоны. Комплекс 1 содержит ФМН и несколько белков с железносерными центрами с типом кластера 2 Fe – 2S и 4 Fe – 4S (рис.4). Согласно современным представлениям, эти центры представляют собой многоядерные комплексы железа, ковалентно связанные с атомами серы и цистеиновыми остатками белков.

Рис.4. Схема расположения железосерных кластеров в белковых молекулах. (Костюк, 321)

Комплекс 11 катализирует окисление сукцината убихиноном и не может переносить протоны. Комплекс содержит ФАД, цитохром b 557 и два железосерных центра Fe – S с типом кластера 2 Fe – 2S и один железносерный центр с типом кластера 4 Fe – 4S. Убихинон (коэнзим Q) в митохондриях животных клеток представлен в форме Q 10 , т.е. его молекула содержит цепь из 10 пятиуглеродных изопреновых остатков, что определяет высокую гидрофобность этой молекулы. Убихинон хорошо растворяется в липидной фазе мембраны и способен к трансмембранному переходу путем диффузии. Присоединяя два электрона и два протона, убихинон восстанавливается и превращается в убихинол QН 2 .

Комплекс 111 катализирует перенос электронов от убихинола к цитохрому с, способен также транспортировать протоны. В состав этого комплекса входят цитохромы b 562 , b 566 , цитохром c 1 , железносерный центр с типом кластеров 2 Fe – 2S.

Комплекс 1У переносит электроны от цитохрома с к кислороду. В состав этого комплекса входят фермент цитохром с-оксидаза с двумя гемами в молекулах цитохромов а и а 3 и два атома меди. Окисленная форма (Fe 3+) цитохромов а и а 3 принимает электроны от восстановленного цитохрома с и переходит в восстановленную форму (Fe 2+).

Значительная часть свободной энергии, которая выделяется при переносе электронов по ЭТС, запасается в форме АТФ на участках сопряжения биологического окисления с фосфорилированием. Участки сопряжения локализованы: 1) между НАДН-дегидрогеназой и цитохромом b, 2) между цитохромом b и цитохромом с, 3) между цитохромом с и кислородсвязывающим участком комплекса 1У (см. рис. 3). На этих участках ЭТС количество выделяющейся энергии достаточно для образования фосфоангидридной связи.

По-существу, транспорт электронов по дыхательной цепи митохондрии представляет собой последовательнось окислительно-восстановительных реакций. Перенос электронов в ЭТС осуществляется по градиенту значений окислительно-восстановительных потенциалов (ОВП) пар: донор электронов-акцептор электронов. Как известно, значение ОВП выражается в вольтах и характеризует способность донора отдавать электрон(ы) акцептору в сопряженной окислительно-восстановительной паре. ОВП окислительно-восстановительной пары может иметь и положительное, и отрицательное значение. Чем выше абсолютное значение ОВП системы, тем выше окислительно-восстановительные свойства системы. Величина и знак ОВП для окислительно- восстановительных пар позволяет предсказать направление движения электронов: электроны транспортируются от отрицательно заряженного донора к положительно заряженному (по отношению к донору) акцептору. Определение ОВП окислительно-восстановительных пар проводят путем измерения электродвижучей силы (ЭДС) с использованием стандартного (водородного) электрода. Водородный электрод представляет собой платиновую пластину, который погружен в 1 М раствор Н + находящийся в равновесии с газообразным Н 2 при давлении 1 атм. Потенциал такого стандартного электрода условно принимают равным нулю. Стандартный окислительно восстановительный потенциал Е 0 характеризует способность исследуемой редокс-системы окислять или восстановливать водородный электрод, при однаковой концентрации окислителя и восстановителя. Величину ОВП можно найти по следующей формуле

Е 0 = Е 0 + RTln Ox/ Red/nF

где Е 0 – стандартный редокс-потенциал; R – универсальная газовая постоянная; Т- абсолютная температура; Ox/ Red –отношение концентрации окисленной и восстановленной форм вещества; F- число Фарадея; n –число переносимых электронов.

В электронно-транспортной цепи митохондрий восстановителем (донором электронов) является атом водорода (в составе НАДН и ФАДН 2), окислителем служит атом кислорода, который в процессе дыхания восстановливается до Н 2 О. Как отмечалось выше, между этими молекулами находятся не менее 10 промежуточных молекулярных переносчиков электронов, за счет работы которых энергия окислительно-восстановительных реакций преобразуется в энергию фосфоангидридной связи в молекуле АТФ. Энергия образования фосфоангидридной связи в АТФ при стандартных условиях составляет ΔG 0 = - 35 кДж/моль, что соответствует изменению редокс-потенциала Δ Е 0 = - ΔG 0 / nF = 0,18 В. Величина окислительно–восстановительного потенциала ЭТС митохондрий составляет 1,14 В, что эквивалентно 220 Кдж. В таблице 1 приведены Значения ОВП окислительно-восстановительных пар (основных молекулярных переносчиков), локализованных в дыхательной цепи.

Таблица 1.

Значения окислительно-восстановительных потенциалов молекулярных переносчиков электронов в дыхательной цепи митохондрий

Синтез АТФ на мембранах митохондрий . Фосфорилирование АДФ осуществляется встроенным в внутренную мембрану митохондрий ферментом - Н + -зависимой АТФ-синтазой. По современным представлениям, мембранная АТФ-синтаза является миниатюрным молекулярным мотором. Принцип его работы подобен работе электродвигателя, т.е. вращение ротора происходит вследствие прохождения электри­ческого тока через его обмотку. В отличие от искусственных электромоторов, в АТФ-синтазе вращение ротора осуществляется не потоком электронов, а потоком протонов. До недавнего времени считалось, что самыми миниатюрными «живыми» моторами являются флагеллярные моторы, которые генерируют движение бактерий. Однако, оказалось, что самым маленьким из всех известных в природе вращающихся моторов явля­ется протонная АТФ-синтаза. Такие молекулы обнаружены в митохондриях, хлоропластах, на плазматических мембранах бактерий. Исследования последних лет показали, что АТФ-азы в энергопреобразующих мембранах клеток растений, животных и бактерий по струтуре и функциям не имеют существенных различий.

На рис. 4 показана структура ферментного комплекса, полученная на основе данных рентгеноструктурного анализа АТФ-азы из митохондрий сердца бы­ка. Как видно, молекула этой АТФ-азы состоит из двух функциональных частей: встроенного в мембрану протонного канала F 0 и каталитической части F 1 , выступающей в матрикс митохондрии. Этот ансамбль имеет вид слегка приплюс­нутого шара высотой 8 нм и шириной 10 нм. В центре шара находится субъединица g, которая образована двумя протяженными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. Нижняя часть субъе­диницы g выступает из шара на 3 нм в сторону мем­бранного комплекса F 0 . Субъединица d расположе­на на внешней стороне F 1 . Внутри ансамбля (ab) 3 находится минорная субъединица e , которая связа­на с субъединицей g. Обе эти субъединицы (g и e) подвижны - они входят в состав своеобразного ро­тора, который вращается внутри неподвижного комплекса (ab) 3 .

Мембранный комплекс F 0 служит основанием, которое удерживает АТФ-синтазу в мембране.Этот комплекс включает в себя протонный канал, по которому ионы водорода переносятся через АТРсинта­зу Пространственная структура F 0 расшифрована не столь детально, как строение водорастворимого ком­плекса f 1. Ориентированный в водную фазу (в матрикс митохондрии) комплекс F 1 состоит из девяти субъединиц пяти типов полипептидов (Зa, Зb, g, d, e). Полипептидные цепи субъединиц a и b уложены в похожие по строению белковые глобулы, которые все вместе образуют гексамер -ансамбль, состоящий из шести субъединиц.

Рис. 4. Схематичное изображение АТФ-синтазы в мембранах митохондрий

А. Схема расположения основных белковых субьединиц, образующих комплексы F 0 и F 1

Б. АТФ-синтаза - внутриклеточный электродвигатель: Ротор – g, e - субьединицы (обозначены красным цветом); статор - Зa, Зb, d, c, a, b - субьединицы (обозначены синим цветом).

Представления об АТФ-синтазе, как молекуляр­ной машине, работа которой связана с ее вращени­ем, хорошо согласуются со структурными особенно­стями комплекса. В структуре АТФ-синтазы можно выделить две группы белковых субъединиц: одна из них образует статор мотора, который неподвижен относительно мембраны, а другая соответствует подвижному ро­тору, вращающемуся внутри статора. Статор включает в себя шарообразный гексамер, состоящий из трех субъединиц a и трех субъединиц b, находящуюся на его поверхности субъединицу d, а также субъединицы a и b мембран­ного комплекса F 0 (рис 4,Б). В этой макромолекулярной кон­струкции субъединицы b выполняют роль своеоб­разного кронштейна, связывающего неподвижные субъединицы комплексов F 0 и F 1 . К находящейся в мембране субъединице а примыкает гидрофобное кольцо, образованное субъединицами с мембран­ного комплекса F 0 .

Ротор состоит из субъединиц g и e комплекса F 1 . Субъединица g, расположенная внутри комплекса (ab) 3 , заметно выступает из него и соединяется с погруженным в мембрану кольцом из субъединиц с . Имеются все основания считать, что субъединица g, входящая в состав ротора, действительно вращается при работе фермента. Для того, чтобы провер­нуть ротор внутри статора, и тем самым заставить АТФ- синтазу сделать молекулу АТР, необходим внешний источник энергии. Как уже было сказано выше, когда АТФ-синтаза работает в режиме синтеза АТФ, движущей силой для ее работы явля­ется энергия протонов, переносимых через сопрягающую мембрану за счет протонного потен­циала. При работе АТФ-синтазы в режиме гидролиза АТФ источником энергии для вращения ротора служит энергия, запасенная в молекуле АТФ.

Наглядно показано, что гидролиз АТР комплексом F 1 , действительно сопровождается вращением субъ­единицы g относительно гексамера (ab) 3 . Об этом свидетельствуют работы американцев Капальди, Кросса и их сотрудников. Им удалось при­шить субъединицу g к субъединице b и тем самым блокировать возможное вращение субъединицы g внутри комплекса F 1 . В этом случае, фер­ментативная активность комплекса F 1 , (его способ­ность гидролизовать АТФ) при этом была полно­стью подавлена.

Самым впечатляющим доказательством того, что субъединица γ, действительно крутится в ходе работы фермента, стала замечательная работа, группой японских исследо­вателей Киношите, Йошиде и их соавторами. Они увидели враще­ние субъединицы γ, с помощью флуоресцентного микроскопа. Как можно разглядеть вращение рото­ра, диаметр которого составляет всего лишь 1 нм? Чтобы наблюдать за вращением этой субъединицы, к ее основанию, выступающему из комплекса F 1 , японские ученые прикрепили специальный макромолекулярный маркер - фрагмент нити актина длиной около одного микрона, который, в свою очередь, был помечен флуоресцентным красителем. Остальную часть отделенной от мембраны молекулы f 1 обездвижили, пришив к субъединицам b специальные хвостики, с помощью которых F 1 прикрепили к не­подвижной подложке. Наблюдая с по­мощью микроскопа за изменением положения флуоресцирующей нити актина, жестко связанной субъединицей γ, удалось непосредственно увидеть ее вращение. Оказалось, что в ходе работы фермен­та, гидролизующего АТФ, актиновый хвост вращается против часовой стрелки. Эти эксперименты продемон­стрировали, в буквальном смысле этого слова, вращение самого маленького из всех известных к настоящему времени природных моторов. Вместе с этим в науке окончательно утвердилось новое понятие - враща­тельный катализ (англ. - rotary catalysis).

Замечательным качеством вращающегося мото­ра АТФ-синтазы является его исключительно высо­кий коэффициент полезного действия. По­казано, что для поворота актинового хвоста на 120° затрачивается около 35 кДж энергии, т.е. приблизительно равная энергии образования АТФ из АДФ. Это означает, что КПД работы мотора близок к 100 %.

В табл. 2 приведены сравнительные характерис­тики различных молекулярных моторов, встречаю­щихся в живой клетке. Видно, что АТФ-синтаза явля­ется своего рода рекордсменом среди молекулярных моторов своей "весовой категории". По эффектив­ности работы и развиваемой ею силе она сущест­венно превосходит все известные в природе моле­кулярные моторы. Так, например, максимальная сила, создаваемая при работе одного миозинового мостика актомиозинового комплекса мышечных волокон, составляет F макс = 3-5 пН. Вращательный момент, создаваемый молекулой f 1 за счет гидролиза АТФ, достигает величины М = 40 пН нм. Если учесть, что радиус вращающей­ся субъединицы составляет r = 1 нм, то сила F макс разви­ваемая молекулой f 1 , будет равна 40 пН. Оказывается, что молекула F 1 , приблизительно в 10 раз сильнее актомиозинового комплекса - моле­кулярной машины, специализирующейся в клетках и различных органах на "профессиональном" вы­полнении механической работы. Таким образом, за сотни миллионов лет до того, как появился человек, который изобрел колесо, преимущества вращатель­ного характера движения были успешно реализова­ны природой на молекулярном уровне.

О СУТИ РАБОТ ГЕОРГИЯ ПЕТРАКОВИЧА ДОЛЖЕН ЗНАТЬ КАЖДЫЙ! ТЕРМОЯДЕР В КЛЕТКЕ Приведу полностью интервью с Георгием Петраковичем, опубликованное в журнале "Чудеса и приключения" № 12 за 1996 г., стр. 6-9. Специальный корреспондент журнала Вл. Иванов встретился с действительным членом Русского физического общества, врачом-хирургом Георгием Николаевичем Петраковичем, опубликовавшим сенсационные работы о термоядерных реакциях, происходящих в живых организмах, и превращениях в них химических элементов. Это намного фантастичнее самых смелых опытов алхимиков. Беседа посвящена подлинному чуду эволюции, главному из чудес живой природы. Мы не во всем согласны с автором смелой гипотезы. В частности, будучи материалистом, он, как нам кажется, исключает духовное начало из тех процессов, где оно, по всей видимости, должно присутствовать. Но все же гипотеза Г. Петраковича заинтересовала нас, потому что она пересекается с работами академика В. Казначеева о "холодном термояде" в живой клетке. Одновременно гипотеза перекидывает мостик к понятию ноосферы. В. Вернадского, указывая на источник, непрерывно подпитывающий ноосферу энергией. Гипотеза интересна и тем, что прокладывает научные пути к объяснению ряда загадочных явлений, таких как ясновидение, левитация, иридодиагностика и других. Мы просим извинить нас за некоторую ученую сложность беседы для неподготовленного читателя. Сам материал, к сожалению, по характеру своему не может быть подвержен значительному упрощению. КОРРЕСПОНДЕНТ. Сначала суть, соль чуда, несовместимого, казалось бы, с представлениями о живых организмах... Что за странная сила действует в нас, в клетках нашего тела? Все напоминает детективную историю. Сила эта была известна, если можно так выразиться, в другом качестве. Она действовала инкогнито, как бы под маской. Про нее говорили и писали так: ионы водорода. Вы поняли и назвали ее иначе: протоны. Это те же ионы водорода, голые ядра его атомов, заряженные положительно, но это одновременно и элементарные частицы. Биофизики не заметили, что Янус двулик. Не так ли? Можно об этом подробнее? Г.Н. ПЕТРАКОВИЧ. Живая клетка получает энергию в результате обычных химических реакций. Так считала наука о клеточной биоэнергетике. Как всегда, в реакциях принимают участие электроны, именно их переходы обеспечивают химическую связь. В мельчайших "пузырьках" неправильной формы - митохондриях клетки - происходит окисление с участием электронов. Это постулат биоэнергетики. Вот как представляет этот постулат ведущий биоэнергетик страны академик РАН В.П. Скулачев: "Чтобы поставить эксперимент по использованию ядерной энергии, природе пришлось создать человека. Что же касается внутриклеточных механизмов энергетики, то они извлекают энергию исключительно из электронных превращений, хотя энергетический эффект здесь неизмеримо мал по сравнению с термоядерными процессами." "Исключительно из электронных превращений..." Это заблуждение! Электронные превращения - это химия, и только. Именно термоядерные реакции лежат в основе клеточной биоэнергетики, и именно протон, он же ион водорода - тяжелая заряженная элементарная частница - является главным участником всех этих реакций. Хотя, разумеется, и электрон принимает определенное, и даже важное участие в этом процессе, но в иной роли, совершенно отличной от роли, предписанной ему учеными специалистами. И что самое удивительное: чтобы доказать все это, не надо, оказывается, проводить какие-либо сложные изыскания, исследования. Все лежит на поверхности, все представлено в тех же самых неоспоримых фактах, наблюдениях, которые сами же ученые и добыли своими тяжкими трудами. Надо лишь непредвзято и углубленно поразмышлять над этими фактами. Вот неоспоримый факт: известно, что протоны "выбрасываются" из митохондрий (термин широко используется специалистами, и в нем звучит пренебрежение к этим трудягам-частицам, словно речь идет об отходах, "мусоре") в пространство клетки (цитоплазму). Протоны движутся в нем однонаправлено, то есть никогда не возвращаются назад, в отличие от броуновского движения в клетке всех других ионов. И движутся они в цитоплазме с огромной скоростью, превышающей скорость движения любых других ионов во много тысяч раз, Ученые никак не комментируют это наблюдение, а задуматься над ним следовало бы серьезно. Если протоны, эти заряженные элементарные частицы, движутся в пространстве клетки с такой огромной скоростью и "целенаправленно", значит, в клетке есть какой-то механизм их ускорения. Несомненно, механизм ускорения находится в митохондрий, откуда изначально с огромной скоростью и "выбрасываются" протоны, но вот какого он характера... Тяжелые заряженные элементарные частицы, протоны, могут ускоряться только в высокочастотном переменном электромагнитном поле - в синхрофазотроне, например. Итак, молекулярный синхрофазотрон в митохондрий? как ни покажется странным, да: сверхминиатюрный природный синхрофазотрон находится именно в крохотном внутриклеточном образовании, в митохондрий! Протоны, попав в высокочастотное переменное электромагнитное поле, на все время пребывания в этом поле утрачивают свойства химического элемента водорода, но зато проявляют свойства тяжелых заряженных элементарных частиц." По этой причине в пробирке нельзя в полной мере повторить те процессы, которые постоянно происходят в живой клетке. Например, в пробирке исследователя протоны участвуют в окислении, а в клетке, хотя в ней и происходит свободно-радикальное окисление, перекиси не образуются. Клеточное электромагнитное поле "выносит" протоны из живой клетки, не давая им возможности вступать в реакцию с кислородом. Между тем ученые руководствуются именно "пробирочным" опытом, когда исследуют процессы в живой клетке. Ускоренные в поле протоны легко ионизируют атомы и молекулы, "выбивая" из них электроны. При этом молекулы, становясь свободными радикалами, приобретают высокую активность, а ионизированные атомы (натрия, калия, кальция, магния и других элементов) образуют в мембранах клетки электрические и осмотические потенциалы (но уже вторичного, зависимого от протонов, порядка). КОРРЕСПОНДЕНТ. Самое время обратить внимание наших читателей на то, что невидимая глазу живая клетка сложнее любой гигантской установки, а происходящее в ней не поддается пока даже приблизительному воспроизведению. Быть может, галактики - в другом масштабе, разумеется, - простейшие объекты Вселенной, точно так же, как клетки - элементарные объекты растения или животного. Быть может, уровни наших знаний о клетках и галактиках примерно эквивалентны. Но самое поразительное, что термояду Солнца и других звезд соответствует холодный термояд живой клетки или, точнее, отдельных ее участков. Аналогия полная. Все знают о горячем термояде звезд. Но о холодном термояде живых клеток можете рассказать только вы. Г.Н. ПЕТРАКОВИЧ. Попробуем представить самые важные события на этом уровне. Являясь тяжелой заряженной элементарной частицей, масса которой превышает массу электрона в 1840 раз, протон входит в состав всех без исключения ядер атомов. Будучи ускоренным в высокочастотном переменном электромагнитном поле и находясь с этими ядрами в одном поле, он способен передать им свою кинетическую энергию, являясь наилучшим переносчиком энергии от ускорителя к потребителю - атому. Взаимодействуя в клетке с ядрами атомов-мишеней, он передает им по частям - путем упругих столкновений - приобретенную им при ускорении кинетическую энергию. А потеряв эту энергию, в итоге захватывается ядром ближайшего атома (неупругое столкновение) и входит составной частью в это ядро. А это и есть путь к превращению элементов. В ответ на полученную при упругом столкновении с протоном энергию из возбужденного ядра атома-мишени выбрасывается свой квант энергии, свойственный лишь ядру этого конкретного атома, со своей длиной и частотой волны. Если такие взаимодействия протонов происходят со многими ядрами атомов, составляющих, например, какую-либо молекулу; то происходит выброс уже целой группы таких специфических квантов в определенном спектре частот. Иммунологи считают, что тканевая несовместимость в живом организме проявляется уже на молекулярном уровне. По-видимому, отличие в живом организме "своей" белковой молекулы от "чужой" при их абсолютной химической одинаковости происходит по этим самым специфическим частотам и спектрам, на которые по-разному реагируют "сторожевые" клетки организма - лейкоциты. КОРРЕСПОНДЕНТ. Интересный попутный результат вашей протонно-ядерной теории! Еще интересней процесс, о котором мечтали алхимики. Физики указали на возможность получения новых элементов в реакторах, но это очень сложно и дорого для большинства веществ. Несколько слов - о том же на уровне клетки... Г.Н. ПЕТРАКОВИЧ. Захват потерявшего кинетическую энергию протона ядром атома-мишени изменяет атомное число этого атома, т.е. атом-"захватчик" способен при этом изменить свою ядерную структуру и стать не только изотопом данного химического элемента, но и вообще, учитывая возможность многократного "захвата" протонов, занять иное, чем прежде, место в таблице Менделеева: и в ряде случаев - даже не самое ближайшее к прежнему. По существуречь идет о ядерном синтезе в живой клетке. Надо сказать, такие идеи уже будоражили умы людей: уже были публикации о работах французского ученого Л. Керврана, обнаружившего такую ядерную трансформацию при исследовании кур-несушек. Правда, Л. Кервран считал, что этот ядерный синтез калия с протоном, с последующим получением кальция, осуществляется с помощью ферментативных реакций. Но, исходя из сказанного выше, проще этот процесс представить как следствие межядерных взаимодействий. Справедливости ради следует сказать, что М.В. Волькенштейн вообще считает опыты Л. Керврана первоапрельской шуткой веселых американских ученых коллег. Первая мысль о возможности ядерного синтеза в живом организме высказана в одном из фантастических рассказов Айзека Азимова. Так или иначе, отдавая должное и тому, и другому, и третьему, можно заключить, что согласно излагаемой гипотезе, межядерные взаимодействия в живой клетке вполне возможны. И не будет в том помехой кулоновский барьер: природа сумела обойти этот барьер без высоких энергий и температур, мягко и нежно, КОРРЕСПОНДЕНТ. Вы считаете, что в живой клетке возникает вихревое электромагнитное поле. Оно удерживает протоны как бы в своей сетке и разгоняет их, ускоряет. Поле это излучают, генерируют электроны атомов железа. Есть группы из четырех таких атомов. Они называются у специалистов так: гемы. Железо в них двух- и трехвалентно. И обе эти формы обмениваются электронами, перескоки которых и порождают поле. Частота его невероятно велика, по вашей оценке 1028 герц. Она намного превосходит частоту видимого света, порождаемого обычно тоже перескоками электронов с одного атомного уровня на другой. Не считаете ли вы, что эта оценка частоты поля в клетке вами очень завышена? Г.Н. ПЕТРАКОВИЧ. Отнюдь нет. КОРРЕСПОНДЕНТ. Ваш ответ мне понятен. Ведь именно очень высокие частоты и соответствующие им малые длины волн связаны с большой энергией квантов. Так, ультрафиолет с его короткими волнами действует сильнее, чем обычные лучи света. Для разгона протонов нужны очень _ короткие волны. Возможны ли проверки самой схемы ускорения протонов и частоты внутриклеточного поля? Г.Н. ПЕТРАКОВИЧ. Итак, открытие: в митохондриях клеток генерируется сверхвысокочастотный, сверхкоротковолновый переменный электрический ток и по законам физики, соответственно ему - сверхкоротковолновое и сверхвысокочастотное переменное электромагнитное поле. Самое коротковолновое и самое высокочастотное из всех переменных электромагнитных полей в природе. Еще не созданы приборы, которыми можно было бы измерить такую высокую частоту и такую короткую волну, поэтому таких полей пока для нас как бы вовсе не существует. И открытия пока что не существует... Тем не менее вновь обратимся к законам физики. По этим законам точечные переменные электромагнитные поля самостоятельно не существуют, они мгновенно, со скоростью света сливаются между собой путем синхронизации и резонанса, значительно увеличивающим напряжение такого поля. Сливаются точечные электромагнитные поля, образуемые в электромагнитике перемещающимися электронами, далее сливаются все поля уже митохондрии. Образуется объединенное сверхвысокочастотное, сверхкоротковолновое переменное поле для всей митохондрии. В этом поле и удерживаются протоны. Но митохондрии в одной клетке не две и не три - в каждой клетке их насчитывается десятки, сотни, а в некоторых - даже тысячи, и в каждой из них образуется это сверхкоротковолновое поле; и эти поля устремляются к слиянию между собой, все с той же синхронизацией и эффектом резонанса, но уже во всем пространстве клетки - в цитоплазме. Вот это стремление переменного электромагнитного поля митохондрии к слиянию с другими такими же полями в цитоплазме есть та самая "тягловая сила", та энергия, что с ускорением "выбрасывает" протоны из митохондрии в пространство клетки. Так срабатывает внут-римитохондриальный "синхрофазотрон". Следует помнить, что протоны движутся к ядрам атомов-мишеней в клетке в значительно усиленном поле - настолько коротковолновом, что оно легко, как по волноводу, пройдет между ближайшими атомами даже в металлической решетке. Это поле легко "пронесет" с собой протон, размеры которого в сотню тысяч раз меньше любого атома, и настолько высокочастотно, что оно нисколько не потеряет при этом своей энергии. Такое обладающее сверхпроницаемостью поле возбудит и те протоны, которые входят в состав ядра атома-мишени. И главное - это поле приблизит к ним "налетающий" протон настолько, что позволит этому "налетающему" отдать ядру часть своей кинетической энергии. Самое большое количество энергии выделяется при альфа-распаде. При этом из ядра с огромной скоростью выбрасываются альфа-частицы, представляющие собой прочно связанные два протона и два нейтрона (то есть ядра атомов гелия). В отличие от ядерного взрыва при "холодном термояде" в зоне реакции не происходит накопления критической массы. Распад или синтез могут немедленно прекратиться. Не наблюдается радиации, поскольку альфа-частицы вне электромагнитного поля немедленно превращаются в атомы гелия, а протоны - в молекулярный водород, воду или перекиси. В то же время организм способен сам себе путем "холодного термояда" создавать необходимые ему химические элементы из других химических элементов, нейтрализовать вредные для него вещества. В зоне свершения "холодного термояда" формируются голо граммы, отражающие взаимодействия протонов с ядрами атомов-мишеней. В конечном итоге эти голограммы в неискаженном виде выносятся электромагнитными полями в ноосферу и становятся основой энергоинформационного поля ноосферы. Человек способен произвольно, с помощью электромагнитных линз, роль которых в живом организме выполняют молекулы-пьезокристаллы, фокусировать энергию протонов, и особенно альфа-частиц, в мощные пучки. При этом демонстрируя потрясающие воображение феномены: поднятие и передвижение неимоверных тяжестей, хождение по раскаленным камням и углям, левитацию, телепортацию, телекинез и многое другое. Не может такого быть, чтобы в мире все исчезало бесследно, наоборот, следует думать, что существует некий всемирный "банк", всемирное биополе, с которым сливались и сливаются поля всех живших и живущих на Земле. Это биополе может быть представлено сверхмощным, сверхвысокочастотным, сверхкоротковолновым и сверхпроникающим переменным электромагнитным полем вокруг Земли (и тем самым - вокруг и через нас). В этом поле в идеальном порядке удерживаются ядерные заряды протонных голографических "фильмов" о каждом из нас - о людях, о бактериях и слонах, о червяках, о траве, планктоне, саксауле, живших когда-то и живущих ныне. Живущие ныне и поддерживают энергией своего поля это биополе. Но только редкие единицы имеют доступ к его информационным сокровищам. Это память планеты, ее биосферы. Непознанное еще всемирное биополе обладает колоссальной, если не беспредельной, энергией, все мы купаемся в океане этой энергии, но не чувствуем ее, как не чувствуем окружающий нас воздух, и потому не чувствуем, что она вокруг нас есть... Роль ее будет возрастать. Это наш резерв, наша поддержка. КОРРЕСПОНДЕНТ. Само по себе это поле планеты, однако, не заменит рабочие руки и творческий ум. Оно лишь создает предпосылки для проявления человеческих способностей. Г.Н. ПЕТРАКОВИЧ. Еще один аспект темы. Наши глаза, если и не зеркало души, то прозрачные их среды -зрачок и радужка - все же являются экранами для постоянно исходящего из нас топографического "кино". Через зрачки пролетают "цельные" голограммы, а в радужках протоны, несущие в себе значительный заряд кинетической энергии, непрерывно возбуждают молекулы в глыбках пигмента. Они будут возбуждать их до тех пор, пока в клетках, "пославших" к этим молекулам свои протоны, будет все в порядке. Погибнут клетки, еще что-то случится с ними, с органом - тотчас изменится структура в глыбках пигментов. Это четко зафиксируют опытные иридодиагносты: они уже точно - по проекциям в радужке - знают, какой орган заболел и даже чем. Ранняя и точная диагностика! Некоторые медики не очень благосклонно относятся к своим коллегам-иридодиагностам, считая их чуть ли не шарлатанами. Напрасно! Иридодиагностике, как простому, общедоступному, дешевому, легко переводимому на математический язык, а главное - точному и раннему методу диагностики различных болезней уже в ближайшем будущем светит "зеленый свет". Единственным недостатком метода было отсутствие теоретической базы. Фундамент ее изложен выше. КОРРЕСПОНДЕНТ. Думаю, для наших читателей нужно бы пояснить процесс образования голограмм каждого индивида. Вы это сделаете лучше меня. Г.Н. ПЕТРАКОВИЧ. Представим себе взаимодействия ускоренных протонов с какой-либо крупной объемной (трехмерной) молекулой в клетке, происходящие очень быстро. На такие взаимодействия с ядрами атомов-мишеней, составляющих эту крупную молекулу, будет израсходовано множество протонов, что оставит, в свою очередь, в пучке протонов тоже объемный, но "негативный" след в виде вакуума, "дырок". Этот след и будет самой настоящей голограммой, воплотившей в себе и сохранившей часть прореагировавшей с протонами структуры самой молекулы. Серия голограмм (что и происходит "в натуре") отобразит и сохранит не только физический "облик" молекулы, но и порядок физических и химических превращений отдельных ее частей и всей молекулы в целом за определенный промежуток времени. Такие голограммы, сливаясь в более крупные объемные изображения, могут отобразить жизненный цикл всей клетки, множества соседних клеток, органов и частей тела - всего тела. Есть еще одно следствие. Вот оно. В живой природе, независимо от сознания, мы общаемся прежде всего полями. При таком общении, войдя в резонанс с другими полями, мы рискуем утратить, частично или полностью, свою индивидуальную частоту (как и чистоту), и если в общении с зеленой природой это означает "раствориться в природе", то в общении с людьми, особенно с теми, кто обладает сильным полем, это значит частично или полностью утратить свою индивидуальность - стать "зомби" (по Тодору Дичеву). Технических аппаратов "зомбирования" по программе нет и вряд ли они когда-либо будут созданы, но воздействия одного человека на другого в этом плане вполне возможны, хотя, с позиций морали, недопустимы. Оберегая себя, над этим следует задуматься, особенно когда дело касается шумных коллективных действий, в которых всегда преобладает не разум и даже не истинное чувство, но фанатизм - печальное дитя злонамеренного резонанса. Поток протонов может только увеличиваться за счет слияния с другими потоками, но никак, в противовес, например, электронному потоку, не смешиваться - и тогда он может нести в себе полную информацию уже о целых органах и тканях, в том числе - и о таком специфическом органе, как мозг. По-видимому, мы мыслим программами, и эти голограммы способны передавать потоком протонов через взгляд - тому доказательство не только "выразительность" нашего взгляда, но и то, что животные способны усваивать наши голограммы. В подтверждение этому можно сослаться на опыты известного дрессировщика В.Л. Дурова, в которых принимал участие и академик В.М. Бехтерев. В этих опытах собакам специальной комиссией сиюминутно придумывались какие-либо посильные им задания, В.Л. Дуров тут же "гипнотическим взглядом" передавал собакам эти задания (при этом, как он говорил, он сам как бы становился "собакой" и вместе с ними мысленно выполнял задания), и собаки в точности выполняли все предписания комиссии. Кстати, и фотографирование галлюцинаций можно связать с голографическим мышлением и передачей образов потоком протонов через взгляд. Очень важный момент: несущие информацию протоны своей энергией "метят" белковые молекулы своего тела, при этом каждая "меченая" молекула приобретает свой собственный спектр, и этим спектром она отличается от точно такой же по химическому составу молекулы, но принадлежащей "чужому" телу. Принцип несовпадения (или совпадения) по спектру молекул белка лежит в основе иммунных реакций организма, воспаления, а также тканевой несовместимости, о чем мы уже упоминали. Механизм обоняния тоже построен на принципе спектрального анализа возбужденных протонами молекул. Но в этом случае протонами облучаются все находящиеся во вдыхаемом через нос воздухе молекулы вещества с мгновенным анализом их спектра (механизм очень близок к механизму цветоощущения). Но есть "работа", которую выполняет только высокочастотное переменное электромагнитное поле - это работа "второго", или "периферического", сердца, о котором в свое время много писали, но механизм которого еще никто не раскрыл. Это особая тема для разговора. Продолжение следует...

АТФ-синтаза (Н + -АТФ-аза) - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F 0 и F 1 .

Гидрофобный комплекс F 0 погружён в мембрану. Он служит основанием, которое фиксирует АТФ-синтазу в мембране. Комплекс F0 состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.

Строение и механизм действия АТФ-синтазы. А - F 0 и F 1 - комплексы АТФ-синтазы, В состав F 0 входят полипептидные цепи, которые образуют канал, пронизывающий мембрану насквозь. По этому каналу протоны возвращаются в матрикс из межмембранного пространства; белок F 1 выступает в матрикс с внутренней стороны мембраны и содержит 9 субъединиц, 6 из которых образуют 3 пары α и β ("головка"), прикрывающие стержневую часть, которая состоит из 3 субъединиц γ, δ и ε. γ и ε подвижны и образуют стержень, вращающийся внутри неподвижной головки и связанный с комплексом F0. В активных центрах, образованных парами субъединиц α и β, происходит связывание АДФ, неорганического фосфата (Р i) и АТФ. Б - Каталитический цикл синтеза АТФ включает 3 фазы, каждая из которых проходит поочерёдно в 3 активных центрах: 1 - связывание АДФ и Н 3 РО 4 ; 2 - образование фосфоангидридной связи АТФ; 3 - освобождение конечного продукта. При каждом переносе протонов через канал F 0 в матрикс все 3 активных центра катализируют очередную фазу цикла. Энергия электрохимического потенциала расходуется на поворот стержня, в результате которого циклически изменяется конформация α- и β-субъединиц и происходит синтез АТФ.

АТФ-синтаза — фермент (КФ 3.6.3.14), который осуществляет реакцию синтеза АТФ из АДФ и аниона фосфата обычно за счет энергии трансмембранного электрохимического потенциала протонов (то есть комбинации градиента протонов и электрического напряжения), а в некоторых организмов за счет электрохимического потенциала ионов натрия, превращая ее, таким образом, в энергию химических связей, которая затем может использоваться клеткой в ​​биохимических реакциях. В случае, когда фермент проводит обратный процесс — формирует трансмембранный протонный градиент за счет гидролиза АТФ, его могут называть АТФазы. Действие фермента ингибирует антибиотик олигомицин.

Номенклатура

АТФ-синтаза F 1 F 0 состоит из двух субъединиц:

  • F 0 мембранная часть комплекса
  • F 1 часть комплекса в матриксе митохондрий или цитоплазме бактерий.

Номенклатура субъединиц АТФ-синтазы достаточно сложная и имеет долгую историю. F 1 -фракции получила свое название от срока fraction 1 («фракция 1»), а F 0 (первоначально писалась с индексом «O», а не «ноль», как это более принято сейчас) получила название как фракция, н "связывает олигомицин.

По примеру других ферментов, большинство субъединиц получили названия в виде греческих (от α до ε) и латинских (от a до h) букв. Остальные субъединиц получили сложные названия:

  • F 6 (от fraction 6)
  • OSCP (oligomycin sensitivity conferral protein — «вспомогательной белок чувствительности к олигомицину»)
  • A6L (названный по названию гена генома митохондрий, кодирующего эту субъединицу)
  • IF1 (inhibitory factor 1 — «ингибирующее фактор 1»)

Устройство и принцип работы

АТФ-синтаза располагается на одной из мембран клетки и состоит из погруженного в нее домена F 0 и выступающего в матрикс или цитоплазму домена F 1, соединенных субъединицей γ. Отдаленно фермент напоминает плодовое тело гриба (в связи с чем в литературе по клеточной биологии, особенно старой, АТФ-синтазу иногда называли «грибовидными телом»).

Комплекс F 1 имеет диаметр около 9-10 нм и при разрушении γ «ножки» может отделяться от мембраны, образуя т F 1 -АТФазу. F 1 состоит из трех субъединиц α и трех β, которые объединяются попарно и формируют гексамеров с тремя активными центрами. Конформации меняются при вращении субъединицы γ вместе с комплексом F 0. Движущей силой в этом процессе переноса протона, что катализирует доменом F 0. Таким образом, протон напрямую не участвует в реакции конденсации АДФ и аниона фосфата. Следует отметить, что сам α 3 β 3 гексамеров не вращается относительно «статора» a, поскольку он содержится субъединицей δ, в свою очередь связанной с a субъединицей b («стеблем») комплекса F 1 (хотя обычно F 1 рассматривается как неподвижный, в действительности оба комплекса вращаются относительно друг друга в противоположных направлениях).

Принцип работы комплекса F 1 состоит сначала в слабом связывании АДФ и фосфата с активным центром, который затем меняет конформацию и прочно связывает их, в результате чего синтез АТФ идет самопроизвольно. При третьей конформации АТФ выталкивается из активного центра.

Принцип работы комплекса F 0 (что часто называют «самым маленьким в мире роторным электромотором») заключается в проникновении протона через канал в «статоре» (субъединица a) до связывания в «Ротор» (c-кольце). Для освобождения на другой стороне мембраны протона нужно выйти через другой канал в статоре, что сдвинут на некоторое расстояние, то есть для выхода ротора НЕОБХОДИМО обернуться относительно статора. Таким образом в роторе создается горизонтальная разность потенциалов, вращает его относительно статора.

Физиологическая роль

В роли АТФазы фермент применяется анаеробними бактериями для создания за счет энергии АТФ трансмембранного электрохимического потенциала протонов. Этот градиент, в свою очередь, используется для вращения жгутиков и для транспорта ионов внутрь клетки.

В аэробных бактерий фермент в основном используется для синтеза АТФ, причем электрохимического потенциал для этого производится при функционировании дыхательная цепь переноса электронов. В целом данный процесс называется окислительным фосфорилированием. Он протекает в митохондриях эукариот, на внутренней мембране которых расположены молекулы АТФ-синтазы, причем F 1 субъединица находится в матриксе, где и протекает процесс синтеза АТФ из АДФ и фосфата.

АТФ-синтеза задействована также в процессе фотосинтеза; она локализуется на тилакоидних мембранах хлоропластов, ориентируясь F 1 субъединицы в строму. Строение и механизм работы фермента в этом случае практически идентичен таковым для АТФ-синтазы митохондрий, однако протонный электрохимический потенциал формируется в принципиально ином электронтранспортной цепи.

 

 

Это интересно: