→ Схема строения спиральной галактики. Спиральные галактики. Слабо сжатые системы

Схема строения спиральной галактики. Спиральные галактики. Слабо сжатые системы

В больших спиральных галактиках, наподобие той, в которой мы живем, полная масса звезд составляет около 100-200 млрд. масс Солнца. Если разделить это число на вероятный возраст галактик (10-20 млрд. лет), то мы получим среднюю скорость образования звезд из газа за всю историю галактики, которая рав­на 5-20 солнечных масс в год. Однако темп звездо­образования постепенно уменьшается со временем, по­этому сейчас в большинстве случаев он составляет для большинства спиральных галактик 1-5 массы Солнца в год. А несколько молодых звезд в год - это не так уж много.

Молодые звезды образуются неодинаково часто по всей галактике. Темпы звездообразования зависят от расстояния от центра галактики примерно так, как показана на рис. 6. Хотя молодые звезды могут присут­ствовать (в небольшом количестве) вблизи центра га­лактики, подавляющее большинство их связано со спи­ральными ветвями. Образования звезд за пределами оптически наблюдаемых ветвей практически не происходит, несмотря на то что в ряде галактик там найден межзвездный газ.

Темп звездообразования отличается и для различ­ных типов спиральных галактик. В галактиках Sa он, как правило, меньше, чем в галактиках Sc. Обычно в спиральных ветвях Sa-галактик не наблюдается отдель­ных голубых звезд или ярких областей Н II - они там не только реже встречаются, но и слабее по светимости (последнее пока представляет собой загадку).

Чтобы понять, как происходит рождение звезд в га­лактиках, важно выяснить, откуда же появляются спи­ральные ветви и почему звезды возникают преимущест­венно в них?

Если взглянуть на фотографии некоторых спираль­ных галактик, то может показаться, будто вся галакти­ка, кроме небольшой части в центре, состоит из спи­ралей. Но такое впечатление ошибочно. Проведя спе­циальные измерения, можно убедиться, что даже в га­лактиках с хорошо развитой структурой светимость спиральных ветвей (и в особенности масса) составляет небольшую часть от светимости (или массы) всей га­лактики. Выделяются же они на общем звездном фоне потому, что в спиралях собраны самые яркие объекты галактик: горячие звезды с температурой, на по­верхности 20-30 тыс. градусов, скопления молодых звезд, звездные ассоциации и массивные газовые обла­ка, ярко флюоресцирующие под действием ультрафио­летового излучения горячих звезд. Звезды с большой светимостью и высокой температурой живут гораздо меньше, чем «обычные» звезды типа нашего Солнца. Поэтому мы наблюдаем их только недалеко от мест, где они родились. Их концентрация в спиральных вет­вях говорит о том, что ветви в галактиках - это вы­тянувшиеся длинной цепочкой или полосой области, где происходит величественный процесс зарождения звезд. Правда, известны галактики, где мы видим молодые звезды, а спиральных ветвей у них нет. В таких га­лактиках, как правило, много межзвездного газа. По­хоже, что спиральные ветви просто облегчают и уско­ряют образование звезд, делая этот процесс эффектив­ным, даже когда остается мало необходимого для него «сырья» - межзвездного газа.

Спиральная форма ветвей может быть связана с вращением галактик. Это вращение таково, что его угловая скорость уменьшается с расстоянием от цент­ра галактики. Отсюда следует, что отдельные части га­лактики обегают вокруг галактического центра с раз­личными периодами, и если чем-нибудь выделить во вращающемся диске достаточно большую область, то уже меньше чем через один оборот она превратится в сегмент спирали.

Представим теперь себе, что в нескольких областях в плоскости галактики газ уплотнился и возникли оча­ги звездообразования. Тогда дифференциальное враще­ние галактики очень быстро (если можно назвать быст­рым процесс, идущий десятки миллионов лет) «разма­жет» каждую такую область в сегмент - «обрывок» спиральной ветви. И действительно, «обрывки» спи­ральных ветвей в некоторых галактиках наблюдаются. Наверное, они есть в каждой звездной системе, где оча­ги звездообразования могут растягиваться дифферен­циальным вращением. Но это не решение проблемы, по­скольку во многих галактиках спиральные ветви заве­домо не сегменты. Их удается проследить на протяже­нии одного и даже более оборотов вокруг ядра. Толь­ко процесс, охватывающий значительную часть всей галактики, способен привести к образованию спираль­ных ветвей.

Быть может, спиральные ветви - это просто выбро­сы вещества из центра галактики? Но, во-первых, спи­ральные ветви далеко не всегда «дотягиваются» до центра (в галактиках с перемычкой они, например, от­ходят от нее под прямым углом), а, во-вторых, вещест­во спиральных ветвей (звезды, межзвездный газ) вра­щается вокруг центра галактики по орбитам, близким к круговым, а не движется радиально, как можно было бы ожидать в случае выброса. К тому же, выбросы долж­ны происходить часто, чтобы можно было объяснить широкую распространенность спиральных галактик.

В таком случае спиральные ветви, может быть, представляют собой изогнутые трубки сравнительно плотного межзвездного газа, в котором образуются звезды? Наблюдения нейтрального межзвездного водо­рода не противоречат такому предположению, но что может удерживать газ в таких трубках, почему он не разлетится во все стороны? Собственное гравитацион­ное поле газа удержать его не может: действие грави­тации приведет лишь к тому, что газовая трубка ра­зобьется на отдельные конденсации и разрушится. Да и дифференциальное вращение галактики быстро растя­нет трубку, пока она через 1-2 оборота не «закрутит­ся» совсем. Так что таким путем спиральные ветви объяснить не удается.

Тогда, может быть, в состоянии спасти трубку газа от разрушения магнитное поле? Но и на этом пути встречаются большие трудности: чтобы спиральная ветвь-трубка вращалась как целое, необходимо иметь магнитное поле с плотностью энергии, в несколько сот раз большей соответствующей величины для поля в межзвездном газе нашей Галактики. Вряд ли это воз­можно: такое поле привело бы к легко обнаруживае­мым эффектам, и его присутствие тем или иным путем выдало бы себя.

Решение (единственное ли?) проблемы существова­ния спиральных ветвей удалось найти на ином пути, рас­сматривая их не как сплошные трубки, а как области, где особенно близко друг к другу располагаются орбиты звезд, вращающихся вокруг центра галактики (на­пример, так, как показано на рис. 7). Спиральные вет­ви с этой точки зрения являются лишь уплотнениями в звездном диске, которые не включают в себя все время одни и те же объекты, а перемещаются по диску га­лактики, не перенося с собой вещества, как не перено­сят его волны, распространяющиеся по поверхности воды.

Первым, кто начал разрабатывать подобный подход к объяснению природы спиральных ветвей, был швед­ский математик Б. Линблад. Начиная с 1960-х годов, теория спиральных ветвей как волн плотности стала быстро развиваться благодаря новому гидродинамиче­скому подходу к вопросу распространения волн плотно­сти, заимствованному из плазменной физики. Этот под­ход был применен к изучению волн сжатия со спираль­ным фронтом, распространяющихся в газо-звездном диске галактики. Согласно волновой теории образова­ния спиральных ветвей дифференциальное вращение галактики не должно разрушать спиральную структу­ру, так как в отличие от звездного диска спиральный узор вращается с постоянным периодом, подобно рисунку на твердой поверхности волчка. При этом и звез­ды, и газ движутся относительно спиральных ветвей, периодически проходя через фронт волны. На движе­ние звезд такое прохождение сказывается мало: их плотность в спиральной ветви становится лишь чуть-чуть (на несколько процентов) выше. Иное дело - меж­звездный газ. Его можно рассматривать как сплошную, легко сжимающуюся среду, плотность которой при про­хождении через «гребень» волны должна резко возра­стать. Здесь и кроется ответ на вопрос о том, почему спиральные ветви - место рождения звезд. Ведь сжа­тие межзвездного газа способствует его быстрой кон­денсации в облака, а затем и в звезды.

Процесс прохождения газа через спиральную ветвь неоднократно рассматривался теоретически. Результаты расчетов показывают, что, когда газ «входит» в спи­ральную ветвь, его плотность и давление резко возра­стают (в некоторых случаях возникает ударная волна), и происходит быстрое разбиение газа на две фазы: плотную, но холодную (облака) и разреженную, но с температурой 7-9 тыс. градусов (межоблачная среда). Если масса облаков велика - несколько сотен масс Солнца, то внешнее давление горячей среды может сжать их настолько, что облака станут гравитационно неустойчивыми и смогут сжиматься (до образования звезд). Одновременно и независимо действует и другой механизм увеличения плотности газа. Он связан с тем, что межзвездный газ в магнитном поле галактики об­разует неустойчивую систему. Газовые облака как бы «соскальзывают» по силовым линиям магнитного поля, опускаясь к самой плоскости звездного диска - в так называемые «потенциальные ямы». Там они скаплива­ются и сливаются в большие газовые комплексы, где и происходит образование звезд. Эти комплексы газа, нагретые звездами, и создают клочковатый вид спира­лей в галактиках, богатых межзвездным газом.

Появившиеся в результате этих процессов звезды продолжают свое движение по галактике с теми ско­ростями, которыми обладал породивший их газ, и по­степенно - за десятки миллионов лет - выходят из спиральной ветви. Но за это время самые яркие звез­ды уже успевают постареть и перестают излучать мно­го энергии («погаснут» и газовые облака, светившиеся благодаря этим звездам). Поэтому мы почти всегда наблюдаем яркие звезды и горячий межзвездный газ именно в спиральных ветвях, а не по всей галактике. Более того, эти объекты (а также темные «прожилки» пыли, появление которых, по-видимому, связано со сжа­тием газа) концентрируются не просто к спиральным ветвям, а к их внутренней стороне - как раз там, где, согласно волновой теории, ожидается «вхождение» газа в волну уплотнения и его сжатие.

После прохождения спиральной ветви межзвездный газ вновь становится разреженным - один атом на не­сколько кубических сантиметров пространства. Через фронт волны проходят новые массы газа, возникают новые очаги звездообразования.

Вывод о том, что спиральные ветви галактик мо­гут быть образованы волнами плотности, находит свое подтверждение и в расчетах (с помощью быстродейст­вующих ЭВМ) движения большого количества матери­альных точек, имитирующих звезды и газ галактиче­ского диска. Эти расчеты показали, что газ в своем движении действительно может образовывать ярко выраженную спиральную структуру.

При объяснении природы спиральных ветвей волно­вая теория встретилась с серьезной проблемой: волны плотности оказались не «вечными». Они должны мед­ленно затухать и исчезли бы, просуществовав не бо­лее 1 млрд. лет, если не возбуждались бы вновь или не поддерживались бы каким-либо источником энергии. Поэтому перед учеными встала еще одна задача: вы­яснить, каков источник или, лучше сказать, механизм возбуждения волн плотности?

Таких механизмов было предложено несколько, од­нако, какой из них играет основную роль в галактиках, пока неясно. Возбудить волны может и взаимодейст­вие двух звездных подсистем галактик, если одна вра­щается быстро, а другая - медленно (звездный диск и сфероидальная составляющая галактики), и гравитаци­онная неустойчивость межзвездной среды на периферии галактик, и неосесимметричное распределение масс, часто наблюдаемое вблизи центра галактик, а также, возможно, выбросы из ее центрального ядра.

Вообще говоря, как волны на воде или звуковые волны в воздухе можно возбуждать большим количе­ством способов, так и волны плотности в галактиках могут возбуждаться самыми различными путями - ре­зультат будет один: спиральная структура.

Окончательная проверка правильности волновой тео­рии происхождения спиральных ветвей галактик, види­мо, является делом недалекого будущего. Но пока еще наши знания о природе спиральных ветвей далеко не полны и все предположения и расчеты еще нуждаются в подтверждении. Да и форма спиральных ветвей ча­сто слишком сложна, чтобы считать их математически правильной спиралью. Ветви могут быть и широкими и узкими, отклоняться от формы спирали, сливаться, разветвляться, соединяться перемычками, образовывать несколько независимых «ярусов» и т. д. (Б. А. Ворон­цов-Вельяминов среди тысяч спиральных галактик об­наружил и ряд таких, две ветви которых словно бы закручиваются в разные стороны!). Объяснить это мно­гообразие форм пока не удается. Наконец, в некоторых звездных системах спиральные ветви имеют явно не­волновую природу, хотя их форма, видимо, все же связана с вращением галактики. Это относится не толь­ко к спиральным «обрывкам» внутри галактик. Извест­но немало случаев, когда спиральные ветви… выходят за пределы самих галактик! Широкие и неяркие, они тянутся неровной полосой, подчас на многие десятки тысяч световых лет через периферийные области звезд­ных систем, уходя в межгалактическое пространство. Наблюдаются они почти исключительно там, где есть две или несколько так называемых взаимодействующих галактик. Один из пионеров изучения взаимодейству­ющих галактик - Б. А. Воронцов-Вельяминов обнару­жил большое количество близких друг к другу галак­тик, одна или две из которых обладают странными меж­галактическими ветвями, не всегда спиральными по своему виду (рис 8). Подобные ветви в некоторых случаях могут появиться при действии на звезд­ную систему гравитационного поля соседней галактики. Внешнее гравитационное поле может изменить внут­реннюю структуру галактики (ведь все ее вещество движется под влиянием сил гравитации). Когда к га­лактике подходит другая массивная звездная система, возникают силы, стремящиеся разрушить галактику. Но чаще всего до полного разрушения дело не доходит. Часть звезд отрывается от основного тела галактики и при определенных условиях может образовать одну или две «струи», искривляющиеся из-за того, что звез­ды до этого вращались вокруг центра галактики. Получаются спирали из оторванных от галактики звезд. Если звездная система не окружена достаточно плот­ной газовой средой или не имеет размер, много боль­ший, чем предполагают сейчас, то судьба таких спира­лей проста - пройдут сотни миллионов лет и спирали исчезнут: входящие в них звезды «упадут» назад или навсегда покинут галактику. Правильность подобных представлений подтверждается расчетами взаимодейст­вия звездных систем, проводившимися на ЭВМ.

Но вот что удивительно: можно найти такие галак­тики, у которых внешние ветви «стыкуются» с обычны­ми спиральными ветвями. Значит, возбуждение волн плотности может быть связанным с внешним воздейст­вием. Получается, что одна галактика может на рас­стоянии влиять на образование звезд (а значит, и пла­нет) в другой, соседней галактике (Есть основания полагать, что наша Галактика также несет следы взаимодействия с соседними системами - БМО и ММО. Австралийские радиоастрономы обнаружили длинный и узкий, пе­ресекающий более чем полнеба «рукав» разреженного холодного нейтрального водорода, связанный с этими двумя соседними галак­тиками. Звезд в газовом рукаве пока не обнаружено, но они могут быть и слишком слабыми, чтобы их там можно было различить как отдельные точки.).


Спиральная структура галактик

Спиральные ветви (рукава) - характерная особенность т.н. спиральных галактик, к к-рым принадлежит и наша . Ветви содержат сравнительно малую часть всех звезд галактики, но они явл. одним из наиболее заметных галактич. образований, т.к. в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа относят к молодым, поэтому спиральные ветви можно считать местом образования звезд. Кроме молодых звезд в рукавах сосредоточена большай часть межзвездного газа галактики, из к-рого, по совр. представлениям, и образуются звезды. По характеру спиральных ветвей и по нек-рым др. особенностям спиральные галактики делятся на классы. В галактиках класса Sa (по классификации Хаббла, см. ) ветви относительно тонки (200-300 пк) и туго навиты, у галактик класса Sc они более размыты (диффузны) и круто удаляются от центарльной области. К спиральным галактикам близки галактики с перемычкой (баром), от концов к-рой обычно отходят спиральные ветви. Одна из распространенных классификаций спиральных галактик принадлежит франц. астроному Ж. Вокулеру, она приведена на рис. 1. Буквы A, B, AB характеризуют семейства спиральных галактик. SA обозначает нормальную спиральную галактику, SB - с перемычкой (баром), SAB - переходные формы. Кроме семейств, как видно из рис. 1, учитываются разновидности (кольцевая - r , спиральная s , смешанная - rs ).

Газ в спиральных рукавах состоит в основном из водорода. Обычно он практически неионизован (нейтральный водород, HI), но вокруг горячих звезд водород ионизован (). Газ часто образует плотные диффузные туманности, также служащие ориентиром при определении вида спиральных ветвей. Еще одним признаком ветвей явл. рассеянная в газе , обнаруживаемая по производимому ею поглощению. Она видна как тонкая темная полоса по внутреннему (ближе к центру галактики) краю спиральной ветви. Кроме того, в рукавах наблюдаются тонкие полоски, пересекающие рукава (рис. 2) и отдельные темные массы. Концентрация звезд, образующих галактич. диск, тоже несколько увеличивается в ветвях, но не так сильно, как концентрация газа.

Звезды, газ и др. объекты галактич. диска движутся по орбитам, близким к круговым. Экспериментально установлено, что угловая скорость этого движения как ф-ция радиуса, т.е. , убывает с удалением от центра галактики. При таком характере вращения большие газовые облака или др. протяженные образования растягиваются и становятся похожими на часть спиральной ветви. Однако спиральные ветви не могли возникнуть таким путем. Дифференциальное вращение способно создать структуры, похожие на наблюдаемые рукава, меньше чем за 10 9 лет. В течение неск. оборотов Галактики, возраст к-рой превышает 10 10 лет, такие структуры должны были разрушиться, пространственнное распределение водорода, пыли и горячих звезд стать нерегулярным, чего в большинстве случаев не наблюдается.

Б. Линдблад (Швеция) первым высказал идею о том, что спиральные ветви могут быть волнами плотности. В 1964 г. Ц. Лин и Ф. Шу (США) показали, что в галактиках действительно могут существовать волны плотности спиралевидной формы, вращающиеся с угловой скоростью (т.е. форма фронта таких волн не искажается дифференциальным вращением галаактич. диска) и распространяющиеся по радиусу с определенной групповой скоростью v гр. Поскольку в Галактике газа мало (2-5%), то волны распространяются по звездному населению, в к-ром они могут возбуждаться, а газ уже реагирует на возмущение , связанного с волнами, бегущими по системе звезд, т.е. его движение в гравитац. поле рукавов явл. несамосогласованным.

Галактики представляют собой т.н. бесстолкновительные звездные системы, т.к. время между двумя последовательными сближениями к.-л. звезды с др. звездой на 3-4 порядка больше возраста галактики. Поэтому возможность распространения волн в таких системах довольно необычна. Здесь упругость, необходимая для распространения волн плотности, обусловлена силами Кориолиса, приводящими к эпициклическому движению звезд, т.е. в конечном счете - вращению системы.

В волне концентрация звезд увеличивается незначительно (соответствующее изменение гравитац. потенциала 10-20%). Однако реакция межзвездного газа даже на столь значительное изменение гравитац. потенциала галактики велика: разгоняясь в поле спиральной волны звездной плотности, газ приобретает сверхзвуковую скорость и сжимается в неск. раз. Это может привести к возникновению глобальной (охватывающей большую часть диска) ударной волны в межзвездном газе. Одним из наблюдательных проявлений торможения газа в ударной волне (газ догоняет при своем галактич. движении рукава и затем тормозится) явл. темные полосы плотного газа с пылью на внутр. кромке спиральных рукавов (рис. 2). Сжатие газа может служить спусковым механизмом (триггером) для образования звезд. Действительно, индикаторами спиральной структуры обычно служат молодые OB-звезды и их ассоциации, зоны HII, остатки вспышек сверхновых, молекулярные темные облака, H 2 O-мазеры, источники -излучения (см. ). При протекании межзвездного газа через спиральные рукава в нем могут происходить своего рода фазовые переходы с образованием облачной структуры. Это проливает свет на происхождение сосуществующих одновременно различных фаз (холодной, теплой, горячей) межзвездного газа.

Волновая теория спиральной структуры галактик разработана достаточно детально и допускает количественное сравнение с наблюдениями. Однако имеется ряд нерешенных проблем. Регулярный спиральный узор наблюдается далеко не во всех галактиках, часто видна довольно нерегулярная структура, состоящая из многих коротких образований, к-рые лишь "в целом" формируют подобие спиральных рукавов. Регулярный глобальный спиральный узор наблюдается обычно у галактик, имеющих бар, и у галактик со "спутниками" (рис. 2). В этих случаях регулярная структура находит объяснение. Так, имеющийся в центре галактики бар действует как генератор, возбуждающий и поддерживающий волны плотности. Галактика-спутник, как показывают расчеты на ЭВМ, также может возбуждать спиральные волны плотности в осн. галактике, благодаря возникающим здесь приливным силам.

Несмотря на то что волновая интерпретация спирального узора галактик явл. практически общепринятой, в рамках самой волновой теории существуют точки зрения, окончательный выбор между к-рыми могут помочь сделать только наблюдения. Если Галактику со всеми ее подсистемами рассматривать как бесконечно тонкий диск с нек-рой ср. дисперсией скоростей звезд и споверхностной плотностью, соответствующей проекции полной плотности в данной точке, и приписать этой модели наблюдаемую кривую вращения галактики, то геометрия двухрукавного узора оказывается совпадающей с наблюдаемой при 13 км/(скпк) для определенного типа волн плотности. Согласно другой точке зрения, тип волн плотности определяется плоской подсистемой и дисперсией скоростей ее компонентов, к-рая намного меньше значения, принятого в первом случае. При этом геометрия наблюдаемого узора лучше описывается др. типом волн с 24 км/(скпк). Имеется ряд теоретич. соображений и данных наблюдений, свидетельствующих, по-видимому, в пользу того, что в Галактике реализуется второй случай. Если это так, то Солнце в Галактике находится в исключительном положении, что может иметь далеко идущие последствия для космогонии Солнечной системы и происхождения в ней жизни. Поскольку галактич. диск вращается дифференциально, а спиральные рукава - твердотельно, в Галактике должна существовать окружность, на к-рой угловые скорости диска и волны плотности равны. Такая окружность наз. коротационной (от англ. corotation - совместное вращение). Ее радиус R=R C определяется условием . Поскольку в каждой спиральной галактике может существовать только одна такая окружность, то, очевидно, она явл. выделенной. Угловая скорость вращения Солнца в Галактике 25 км/(скпк), расстояние Солнца до центра Галактики 10 кпк. Если 24 км/(скпк), то, согласно, модели Шмидта (1965 г.), напр., 10,3 кпк. Это значит, что галактич. орбита Солнечной системы близка к коротационной окружности и, следовательно, находится в особом положении.

Одним из наиболее заметных образований в дисках галактик, подобной нашей, являются спиральные ветви (или рукава). Они и дали название этому типу объектов - спиральные галактики. Спиральная структура в нашей Галактике очень хорошо развита. Вдоль рукавов в основном сосредоточены самые молодые звезды, многие рассеянные звездные скопления и ассоциации, а также цепочки плотных облаков межзвездного газа, в которых продолжают образовываться звезды. В спиральных ветвях находится большое количество переменных и вспыхивающих звезд, в них чаще всего наблюдаются взрывы некоторых типов сверхновых. В отличие от гало, где какие-либо проявления звездной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвездного пространства в звезды и обратно. Галактическое магнитное поле, пронизывающее весь газовый диск, также сосредоточено главным образом в спиралях.

Спиральные рукава Млечного Пути в значительной степени скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвездного водорода, концентрирующегося вдоль длинных спиралей. По современным представлениям, спиральные рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звезд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны.

Наша Галактика и местро Солнца в ней Скопления и ассоциации звезд: шаровые скопления

Скопление - группа звезд, связанных общим происхождением, положением в пространстве и движением. Появилось разделение скоплений на шаровые и рассеяные, затем появился еще один тип звездных групп ассоциации. В небольшой телескоп шаровые скопления выглядят как очень тесные группы звезд. Все они имеют ярко выраженную сферическую или слегка сплюснутую форму, звезды в них сильно концентрируются к центру, сливаясь в одно световое пятно. Только наблюдения с очень высоким угловым разрешением, например на Хаббловском космическом телескопе, позволяют рассмотреть отдельные звездочки вплоть до самого центра. Крупнейшие скопления содержат свыше миллиона звезд. Количество звезд в кубическом парсеке в центрах шаровых скоплений изменяется от нескольких сот до десятков тысяч. Заметим, что в окрестностях Солнца одна звезда приходится на объем более кубического парсека. Диаметры шаровых скоплений составляют от 20 до 100 пк. Шаровые скопления - старейшие объекты нашей Галактики: они образовались одновременно с ней. Когда возраст скоплений был еще невелик, в них входили очень разные по массе звезды. Самые легкие были в несколько раз менее массивны, чем Солнце, а масса наиболее тяжелых превышала солнечную в десятки раз. В массивных звездах все процессы идут интенсивнее, чем в легких, они быстро растрачивают свой запас энергии и "умирают". Поэтому сейчас в шаровых скоплениях присутствуют лишь маломассивные звезды, да и из них большинство находится на поздних стадиях своей эволюции. Когда и они погаснут, в скоплениях останутся только самые маленькие звезды, которые живут очень долго. Зная, сколько в скоплении звезд с различной массой, можно определить, как давно оно возникло. Возраст шаровых скоплений, оцененный таким образом, превышает 12 млрд. лет.

Массивные звезды, бывшие когда-то членами этих систем, не пропали бесследно. После них остались белые карлики, нейтронные звезы и, возможно, черные дыры. Чаще всего они обнаруживают себя по гравитационному взаимодействию с другими членами скопления. Результат: вспышки новых звезд, пульсары. Старые звезды часто теряют устойчивость и начинают регулярно менять яркость - становятся переменными. Подобных звезд - цефеид - в шаровых скоплениях открыто очень много. Родившись одновременно с Галактикой, шаровые скопления практически сохранили химический состав того гигантского догалактического облака, из которого они сформировались. Низкое содержание тяжелых химических элементов. История образования шаровых скоплений отразилась на их пространственном распределении в Галактике. Все они располагаются сферически симметрично относительно центра Галактики.

(почти сферического утолщения), окружённого диском:

  • балдж имеет сходство с эллиптической галактикой , содержащей множество старых звёзд - так называемое «Население II » - и нередко сверхмассивную чёрную дыру в центре;
  • диск является плоским вращающимся образованием, состоящим из межзвёздного вещества , молодых звёзд «Населения I » и рассеянных звёздных скоплений .

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик , для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра. Абсолютное большинство наблюдаемых спиральных галактик вращается в сторону закручивания спиральных ветвей .

Диск спиральной галактики обычно окружён большим сфероидальным гало , состоящим из старых звёзд «Населения II », большинство которых сосредоточено в шаровых скоплениях , вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар» ), от концов которой отходят спиральные рукава . В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений . Вещество в них вращается вокруг центра галактики под действием гравитации.

Масса спиральных галактик достигает 10 12 масс Солнца.

Известен следующий парадокс: время обращения звёзд вокруг ядра галактики составляет порядка 100 миллионов лет; возраст самих галактик в несколько десятков раз больше. Между тем спирали закручены как правило на небольшое число оборотов. Парадокс объясняется тем, что принадлежность звёзд спиралям не постоянна: звёзды входят в область, занимаемую спиральным рукавом, на некоторое время замедляют своё движение в этой области, и покидают спираль. Между тем спираль, как область повышенной плотности вещества в диске спиральной галактики, может существовать неограниченно долго - спирали подобны стоячим волнам.

Спирали галактик могут несильно отличаться по количеству звёзд от окружающего их диска, но могут быть существенно ярче. Газовые облака, пересекая спираль, испытывают сжатие или расширение, порождающие ударные волны в газе. Всё это приводит к нарушению равновесия в облаках и интенсивному звёздообразованию в области спирали. А если учесть, что время жизни ярчайших гигантов и сверхгигантов в тысячи раз меньше, чем возраст Солнца, то получается что большинство ярких голубых звёзд собрано в небольшом объёме спирального рукава: сверхгиганты не успевают покинуть спираль за те несколько миллионов лет, которые существуют до взрыва сверхновой. Как следствие, большое количество голубых сверхгигантов придаёт спиралям галактик яркий голубоватый оттенок.

Расположение Солнца

Солнце интересно тем, что расположено между спиральных рукавов Галактики и делает оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава. Как следствие, Солнце не пересекает области активного звездообразования, в которых часто вспыхивают сверхновые - источники губительного для жизни излучения.

Спиральные галактики

  • Млечный Путь (наша Галактика)

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Борисов, Александр Ильич
  • Тетишери

Смотреть что такое "Спиральная галактика" в других словарях:

    Спиральная галактика - галактика, отличающаяся спиральной структурой. Любая галактика со спиральными рукавами. Эдвин Хаббл разделил спиральные галактики на две обширные группы с центральной перемычкой (SB галактики) и без нее (S). Каждая группа далее подразделяется на… … Астрономический словарь

    СПИРАЛЬНАЯ ГАЛАКТИКА - СПИРАЛЬНАЯ ГАЛАКТИКА, тип стандартных ГАЛАКТИК в классификации Эдвина ХАББЛА … Научно-технический энциклопедический словарь

    Спиральная галактика M101 - M101 Галактика История иссл … Википедия

    Спиральная галактика M74 - Галактика История исследования Открыв … Википедия

    Спиральная галактика M65 - M65 Галактика История исследования Открыватель Пьер Мешен Дата открытия … Википедия

    Спиральная галактика M94 - M94 Галактика История исследования Открыватель Пьер Мешен … Википедия

    Спиральная галактика с перемычкой - Компьютерная модель галактики Млечный путь … Википедия

    Спиральная галактика с баром - … Википедия

    Карликовая спиральная галактика - Карликовая спиральная галактика разновидность спиральных галактик, отличающаяся небольшими размерами (меньше 5 кпк), слабой светимостью и низкой поверхностной яркостью. Карликовые спиральные галактики относят к подклассу карликовых… … Википедия

СПИРАЛЬНЫЕ ГАЛАКТИКИ

- галактики, в к-рых заметны спиральныеветви; наиб. многочисл. тип наблюдаемых галактик. К С. г. относится, вчастности, Галактика, ближайшими к нам С. г. являются М 31 (туманностьАндромеды) и М 33 (туманность Треугольника).

Структура и состав спиральных галактик. В состав С. г. входятзвёзды с разл. возрастом и хим. составом, межзвёздный газ и межзвёзднаяпыль. Общая структура С. г. показана на рис. Плоская составляющая (1 )включает молодые звёзды и газопылевую среду и образует слой толщиной неск. 2)такжепринадлежат плоской составляющей. Диск (3 )содержит осн. массу звёздС. г. Изменение сглаженной плотности диска с радиусом r и координатой z, перпендикулярной его плоскости, r мин < r < r макс обычно следует закону:

Здесь - плотность в центре диска,r 0 2-5 кпк - радиальная шкала (характерный размер) диска, z 0 0,3-1кпк - нолутолщина диска; z 0 зависит от дисперсии скоростей звёздвдоль оси z. Закон описывает распределение плотности в изотермич. самогравитирующем диске. r. В нек-рых С. г. на наблюдается «обрыв» - резкое падение яркости (плотности) диска. Балдж (4)- внутренняя наиб. яркая часть сферической (сфероидальной) составляющейС. г., содержащей старые звёзды с вытянутыми орбитами. Гало (5) - внеш. Вращение галактик, Скрытая масса). Ядерная область (6) - выделяющаясяпо яркости или структурным особенностям центр. часть С. г. (см. также Ядрагалактик). Спектр обычно содержит эмиссионные линии. В ядерной областичасто концентрируются молекулярный газ и связанные с ним области звездообразования. Ок. 1% С. г. обладают активными ядрами ( сейфе ртовские галактики). Эти ядра имеют широкие эмиссионные линии, свидетельствующие о быстрыхдвижениях газа, со скоростями в тысячи км/с, высокую светимость (обычнонеск. % от интегральной светимости С. г.), нетепловой непрерывный спектри переменность на разл. масштабах времени.

Содержание газа и звездообразование. Осн. масса межзвёздногогаза в С. г. присутствует в двух формах: нейтрального газа (HI) и молекулярногогаза (Н 2). В большинстве С. г. почти весь газ сосредоточен впределах оптич. диаметра диска, однако имеется ряд примеров существованияпротяжённой газовой оболочки вокруг галактик (М81, М83). Масса газа поотношению к интегральной массе С. г. в ср. падает от галактик типа Sc кSa. Под действием УФ-излучения горячих звёзд газ ионизуется, образуя протяжённые зоныНИ, хорошо заметные на фотографиях С. г. Поскольку горячие звёзды высокойсветимости являются короткоживущими, светимость С. г. в эмиссионных линияхслужит критерием интенсивности звездообразования. Др. наиб. часто используемымииндикаторами интенсивности звездообразования являются: показатели цвета(см. Астрофотометрия )С. г., исправленные за межзвёздное покраснение(см. Межзвёздное поглощение), светимость С. г. в УФ-области спектраили в далёкой ИК-области (= 10-10 3 мкм), где излучает пыль, нагреваемая молодыми звёздами. 0,01- 10/год( кГ). В расчётена единицу массы интенсивность звездообразования уменьшается от галактикSc к Sa - в соответствии с относит. содержанием газа в этих С. г. Областизвездообразования образуют комплексы с характерным размером 0,5 кпк. В осн. они сосредоточены в спиральных ветвях С. г.

Спиральные ветви. Наблюдаемые свойства. Спиральные ветви (СВ)представляют области концентрации молодых звёзд и звёздных комплексов, 10 -5 -10 -6 Гс). На фоне звёздного диска СВ выделяются повышенной яркостью и болееголубым цветом. Пыль часто образует длинные неровные прожилки, идущие вдольвнутр. кромки СВ, что интерпретируется как результат существования ударныхфронтов в межзвёздной среде. За редким исключением СВ являются закручивающимися,

Различают СВ флокуллентные и регулярные. Первые представляют собой совокупностьотдельных много-числ. коротких дуг, не продолжающих одна другую. Вторыепрослеживаются на большом протяжении, нередко более одного оборота. В этомслучае чаще всего наблюдаются две ветви. Обычно ветви С. г. содержат втой или иной пропорции признаки обоих структурных типов.

Механизм образования и поддержания спиральных ветвей. В дифференциальновращающемся диске галактики спиральная структура может быть долгоживущейв двух случаях: когда СВ непрерывно возникают и разрушаются и когда весьспиральный узор вращается с одинаковой угл. скоростью, в отличие от дискаС. г., т. е. не связан с ним жёстко. Первый вариант пригоден для объясненияфлокуллентных СВ, к-рые образуются, если в галактиках непрерывно возникаютлокальные очаги звездообразования. Дифференц. вращение растягивает их вдуги, пока они не потеряют яркость и не исчезнут с прекращением образованиямассивных звёзд. Концентрацию старых звёзд диска флоккулентные СВ не меняют.

Регулярные СВ рассматриваются как волновые образования в диске [идеяпринадлежит Б. Линдбладу (В. Lindblad)]. В процессе движения вокруг центраС. г. звёзды и газ периодически проходят через гребни волн. При этом регулярноменяется как плотность, так и скорости их движения. Анализ поля скоростейгаза С. г. (а для нашей Галактики - и звёзд) подтверждает волновой характерСВ. наиб. высокую амплитуду изменения плотности имеет газ, поскольку дисперсияскоростей газовых облаков (10км/с) в неск. раз ниже, чем звёзд диска, а столкновения газовых масс сопровождаютсяпотерей энергии. Повышение плотности газа в СВ является осн. причиной увеличенияинтенсивности звездообразования в них.

Разрабатывается неск. подходов к объяснению механизмов возбуждения иподдержания спиральных волн плотности (СВП) в С. г. Возможность существованияСВП как малых возмущений в гравитирующем бесстолкновит. (звёздном) дискевпервые была показана в работе К. Лина (С. Lin) и Ф. Шу (F. Shu). В наиб.

Здесь - волновое число, т - мода колебаний (число спиралей), -угл. скорости вращения диска и СВП соответственно,- невозмущённая поверхностная плотность диска, c s - скоростьзвука или дисперсия скоростей, -эпициклич. частота. Роль сил упругости в бесстолкновит. среде играют силыКориолиса. Знак k определяет направление вращения спиралей (закручивающиесяили раскручивающиеся СВ). Дисперсионное соотношение даёт два решения для k, соответствующих «коротким» и «длинным» волнам, к-рые отличаются помимо направлением распространения. Величина для бесстолкновит. газа может иметь значения в интервале . Области диска, где реализуются верхние и нижние пределы, наз. соответственновнешним и внутренним линдбладовскими резонансами, а область - коротацией. Короткие волны распространяются от коротации к резонансам, c s ,проходя через диск за ~10 9 лет. Это обстоятельство, как и затуханиеСВП при появлении ударной волны в газе, заставляет искать механизмы усиленияили возбуждения колебаний. В качестве генератора СВП предлагались вращающийсябар (перемычка), если он имеется в С. г., а также наличие внешнего возмущающеготела (близкого спутника).

В альтернативном подходе, предложенном А. М. Фридманом, СВП имеют негравитационную, а гидродинамич. природу и генерируются в результате гидродинамич. v(r)(вблизи локального максимума кривой вращения). Возникающие при этомСВ имеют закручивающуюся форму, а их число определяется отношением , где - перепад скорости. Наблюдения показывают, что локальный максимум на кривойвращения наблюдается в центр. части мн. галактик (напр., Галактика, М 31),хотя и не всех. По-видимому, единого механизма генерации СВП не существует.

Лит.: Воронцов-Вельяминов Б. А., Внегалактическая астрономия,2 изд., М., 1978; Рольфе К., Лекции по теории волн плотности, пер. с англ.,М., 1980; К r u i t Р. С. van der, Searle L., Surface photometry of edge-onspiral galaxies. 3. Properties of the three dimensional distribution oflight and mass in disk of spiral galaxies, «Astron. and Astrophys.», 1982,т. 110, p. 61; К е n n i с u t t R. C. J г., The rate of star formationin normal disc galaxies, «Astrophys. J.», 1983, v. 272, p. 54; F r i dm a n А. М. и др., Centrifugal instability in rotating shallow water andthe problem of the spiral structure in galaxies, «Phys. Lett.», 1985, v.109 A, p. 228; Ефремов Ю. Н. и др., Современные представления о природеспиральной структуры галактик, «УФН», 1989, т. 157, в. 4, с. 599. А.

  • - сосуды с относительно узким просветом, у которых утолщения вторичной клеточной стенки имеют вид спирали. Способны растягиваться и поэтому свойственны проводящим пучкам молодых растущих органов...

    Анатомия и морфология растений

  • - гигантские звездные системы с числом звезд от десятков до сотен миллиардов в каждой. Современные оценки дают около 150 млн галактик в известной нам Метагалактике...
  • - один из основных типов галактик, масса до триллиона масс Солнца, а звезд до 100-150...

    Начала современного Естествознания

  • - гигантские звездные системы; к ним относится, в частности, наша Галактика. подразделяются на эллиптические, спиральные и неправильные. Ближайшие к нам галактики - Магеллановы Облака и туманность Андромеды...

    Астрономический словарь

  • - вихревые движения воздуха у земной поверхности или за горным препятствием, возникающие в результате неравномерного нагревания склонов. См. Тсхачапи...

    Словарь ветров

  • - роторы - вихревые валы воздуха, обладающие горизонтальной осью вращения. Наблюдаются в долинах, расположенных между параллельными горными хребтами...

    Словарь ветров

  • - гигантские звёздные системы, подобные нашей звёздной системе - Галактике, в состав которой входит Солнечная система...
  • - галактик, спиралевидные образования из горячих звёзд и газово-пылевой материи, отходящие от центр. части спиральных галактик к их периферии...
  • - один из осн. типов галактик. Масса С. г. до ~ 1012 масс Солнца. Каждая С. г. имеет ядро, уплощенный диск, в к-ром располагаются спиральные ветви, и сферич. составляющую, ослабевающую к периферии...

    Естествознание. Энциклопедический словарь

  • - туманности в форме спирали, представляющие собой чрезвычайно удаленные звездные системы, подобные Млечному Пути. ...

    Морской словарь

  • - см. Ткани...
  • - см. Ткани...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Клеточка...

    Энциклопедический словарь Брокгауза и Евфрона

  • - структурные образования, характерные для т. н. спиральных галактик...

    Большая Советская энциклопедия

  • - гигантские звёздные системы, при наблюдениях в телескоп имеющие вид яркого ядра, из которого выходят спиральные ветви, закручивающиеся вокруг ядра. Чаще всего С. г. имеют две ветви, закручивающиеся в...

    Большая Советская энциклопедия

  • - Тонкие, соединения в пучки трубочки, по которыми сок от концов кореньев поднимается по винтообразно или кольцеобразно изогнутым волокнам и расходится по всем частям растения...

    Словарь иностранных слов русского языка

"СПИРАЛЬНЫЕ ГАЛАКТИКИ" в книгах

Крендели спиральные

Из книги Праздничный стол автора Иовлева Татьяна Васильевна

Литературные галактики

Из книги Повседневная жизнь Монпарнаса в Великую эпоху. 1903-1930 гг. автора Креспель Жан-Поль

К ЦЕНТРУ ГАЛАКТИКИ

Из книги Пархатого могила исправит, или как я был антисемитом автора Колкер Юрий

К ЦЕНТРУ ГАЛАКТИКИ - Получил я за книгу порядочные деньги, - сказал мне при нашем знакомстве Борис Иванович Иванов,

4. К ЦЕНТРУ ГАЛАКТИКИ

Из книги Мои кочегарки. Воспоминания. автора Колкер Юрий

4. К ЦЕНТРУ ГАЛАКТИКИ - ... Получил я за книгу порядочные деньги, - говорил мой собеседник, - и ушел с работы. Целый год жил, не работая. И что вы думаете, Юра, я много написал за этот год?Разговор происходил в 1980 году, в кочегарке на улице Плеханова. Собеседника звали Борис

Мы дети Галактики

Из книги Мы в Галактике автора Климкевич Светлана Титовна

Мы дети Галактики ОТЕЦ-ЕДИНАЯ ЖИЗНЬ СЫН – ЗНАЮЩИЙ И ПОЗНАЮЩИЙ ЗАКОНЫ ЖИЗНИ ОТЦА СВЯТОЙ ДУХ – РАЗУМ ОТЦА – СОЗНАНИЕ ЖИЗНИ 07.03.2011 г.Я Есмь Что Я Есмь!Я Есмь Манас!Приветствую тебя, Владыка!Светлана, Дорогая! Мы в Галактике! Эта фраза будет звучать в нашем тексте постоянно. Мы

Разум Галактики

Из книги Мы сменили свою простую одежду на божественную автора Климкевич Светлана Титовна

Разум Галактики «Повышенная осознанность это умение просчитывать символы» Барбара Марсиньяк «Путь силы» 17.02.2011 г.Проснулась, мысль в голове: «Данную многомерную реальность нам открывает множество разумов в нашем сознании» – мысль по теме над осознанием которой я

Центр Галактики

Из книги Тайны пространства и времени автора Комаров Виктор

Центр Галактики Наша звездная система представляет собой объект чрезвычайно сложный и трудный для исследования. К тому же ее изучение современными методами началось сравнительно недавно. Поэтому нет ничего удивительного в том, что с Галактикой связано так много

Галактики

Из книги Твиты о вселенной автора Чаун Маркус

Галактики 86. Что такое галактики? Галактики - большие острова звезд, дрейфующие в океане космического пространства. Это строительные блоки Вселенной, которых около 100 млрд.Галактики разлетаются друг от друга как части космической шрапнели после колоссального взрыва -

Галактики

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Галактики По мере расширения Вселенной горячий газ, из которого она состояла, охлаждался. В каких-то случайных ее областях плотность газа была немного выше, чем в других. Когда газ становился достаточно холодным, гравитация стягивала каждую из областей высокой

Спиральные прочистки труб

Из книги Современный квартирный сантехник автора Бейкер Гленн И.

Спиральные прочистки труб Спиральные прочистки образуют еще одну необходимую группу инструментов для устранения засоров. Часто они называются тросами. Как вы, должно быть, понимаете, существуют различные типы и размеры тросов. Неплохо было бы иметь хотя бы один такой

Галактики

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Галактики Галактики - это гигантские (до сотни млрд звезд) звездные системы. К ним относится, в частности, наша Галактика - Млечный Путь. Ближайшие к нам галактики - Магеллановы Облака (на расстоянии 52 килопарсека) и Туманность Андромеды (на расстоянии 670 килопарсек).

Галактики

Из книги Большая Советская Энциклопедия (ГА) автора БСЭ

Спиральные ветви галактик

БСЭ

Спиральные галактики

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Основной комплекс асан. Уттхита Парсваконасана (асана «Спиральные перемещения»)

Из книги Йога. Домашние тренировки автора Автор неизвестен

Основной комплекс асан. Уттхита Парсваконасана (асана «Спиральные перемещения») Эффект: повышение гибкости костей конечностей, профилактика зажимов суставов.Исходное положение показано на рисунке. На выдохе оттягиваем правую руку и туловище, сильно устремляясь влево

 

 

Это интересно: