→ Устройство плавного пуска насосной станции. Зачем нужен плавный пуск насоса? Описание элементов схемы

Устройство плавного пуска насосной станции. Зачем нужен плавный пуск насоса? Описание элементов схемы

2007-08-28

Рост как жилищного, так и промышленного строительства в последнее время сделал стабильное и качественное водоснабжение одной из первоочередных задач. Одним из наиболее перспективных его способов является использование подземных источников посредством скважин различной глубины. Они позволяют владельцам получать значительное количество воды хорошего качества, причем сроки активной эксплуатации велики и могут составлять десятки лет. При этом скважина - сложное гидротехническое сооружение, требующее квалифицированного подхода к обустройству и надежного оборудования - скважинных насосов.

Рис. 2. Пуск электродвигателя по методу «звезда-треугольник»



Эти агрегаты специально разработаны для работы в достаточно сложных условиях (узкое пространство скважины, повышенная тепловая нагрузка на двигатель и т.д.). Они достаточно дороги и, в силу специфики монтажа, их ремонт сопряжен со значительными трудностями и расходами. Поэтому при подборе такого оборудования следует обращать внимание на ряд деталей и практических моментов, которые помогут увеличить срок бесперебойной работы оборудования и максимально снизить эксплуатационные затраты.

Один из таких ключевых параметров — это способ пуска. Как известно, пусковой ток электродвигателя насоса нередко в 4-7 раз превышает ток номинальной нагрузки. Это ведет к повышенному электротепловому износу изоляции обмоток статора, от которой существенно зависит надежность и долговечность электродвигателя. Кроме того, при недостаточной мощности распределительной электросети возможна кратковременная просадка напряжения, что неблагоприятно сказывается на работе другого электрооборудования, присоединенного к этой же сети.

Вреден такой запуск и для агрегата и скважины в целом, поскольку часто сопровождается гидроударом, разрушающим трубопроводы, арматуру и сам насос. Также при подобном старте наблюдается высокий приток воды в скважину из водоносного пласта, за счет чего происходит разрушение фильтровальной зоны и попадание песка в скважину. Наиболее эффективным решением всех этих проблем является обеспечение плавного пуска насоса, для чего разработан целый ряд различных методов. Все они имеют как достоинства, так и недостатки. В этом материале мы сделали попытку сравнения их эффективности и стоимости.

Негативные факторы, возникающие при эксплуатации электродвигателей скважинных насосов

При организации водоснабжения на базе использования подземных вод технологические режимы эксплуатации водозаборных скважин включают в себя пусковые режимы погружных насосов, количество которых может достигать 30 пусковостановок в час (см. табл. 1). Пуск погружных насосов является одним из наиболее неблагоприятных режимов для их электродвигателей, водоподъемных труб и водозахватной части скважины.

Электродвигатель погружного насоса в этот период на короткое время подвергается пиковой нагрузке, т.к. его пусковой ток, повторимся, в 4- 7 раз превышает значение номинального при относительно невысоком пусковом моменте. Кроме того, скачок пускового тока создает ударный электромагнитный момент, передающийся через вал двигателя на рабочее колесо насоса.

При таких условиях в водоподъемной колонне труб возможны максимальные колебания давления при гидравлическом ударе, а в водозахватной части — высокие значения притока воды в скважину со стороны водоносного пласта. При этом для режима пуска характерны два периода:

  • первый (t 1 = 0,9-0,5 с), в течение которого возникают высокие значения скоростей притока воды в скважину со стороны водоносного пласта в верхней части фильтра. Также происходит резкое изменение давления, нарушающее устойчивость прифильтровой зоны (происходит вынос песка);
  • второй (t 2 = 1-5 с) при определенных условиях сопровождается гидравлическим ударом в напорном трубопроводе.

Для исключения негативных явлений переходных процессов, возникающих при пуске погружных насосов, разработаны технологические схемы оборудования скважин. Они базируются на электрическом (с помощью устройств, изменяющих число оборотов электродвигателя) регулировании подачи воды погружными насосами и гидравлическом (с помощью запорно-регулирующей арматуры) принципах. В данной статье рассматривается электрическая составляющая решения проблемы, а также ее влияние на энергоэффективность используемого насосного оборудования.

Существующие способы снижения пусковых токов электродвигателей. Их реализация на примере скважинных насосов Grundfos

Как правило, в скважинных насосах используются следующие способы снижения пусковых токов их электродвигателей: DОL — прямое включение; SD — включение методом «звезда-треугольник»; метод включения электродвигателя посредством пускового трансформатора — AF; SS — плавный пуск и FC — преобразователь частоты (см. табл. 2). При выборе способа снижения пусковых токов следует учитывать область применения насосного оборудования, технические требования, а также действующие нормы и правила эксплуатации электросетей.

Метод прямого включения (DОL)

При пуске методом DОL, как показано на рис. 1, контактор или аналогичные устройства подключаются к сети напрямую. При прочих постоянных параметрах DОL является тем способом пуска, при котором в электродвигателе возникает минимальное количество тепла и тем самым у электродвигателей мощностью до 45 кВт обеспечивается максимальный срок службы. Однако у электродвигателей большей мощности механическая нагрузка настолько велика, что рекомендуется снижать токи.

Метод включения «звезда-треугольник» (SD)

Это наиболее часто применяемый способ снижения пусковых токов. Во время пуска электродвигатель включен на «звезду», а после окончания пуска переключается на «треугольник». Такое переключение производится автоматически через заданный временной интервал. При пуске в положении «звезда» ток на треть ниже, чем при пуске путем прямого включения и лежит в пределах 1,8-2,5 от номинального.

Метод относительно дешев, прост и надежен. Для насосов с небольшим моментом инерции, например, погружных, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до 2900 мин -1 требуется всего 0,1 с.

Это означает также, что насос при переключении тока сразу же останавливается. Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока. При переключении со «звезды» на «треугольник» насос быстро останавливается и во второй раз должен запускаться напрямую.

Из диаграммы (рис. 2) видно, что на втором этапе значительного сокращения пускового тока не происходит. Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих более продолжительным моментом инерции. У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока.

Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме «звезда» приводит к его перегреву и, следовательно, сокращает срок службы. Установки, содержащие погружные насосы с электродвигателями, включенными по этому методу, часто бывают дороже, чем аналоги, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).

Метод включения электродвигателя посредством пускового трансформатора (AF)

При этом методе пуска (его также называют методом Корндорфа) напряжение снижается посредством трансформаторов (обычно двух), по одному на каждую фазу. Трансформаторы часто имеют два сетевы выхода: один на 75 % и другой на 60 %. При использовании 60 %-го выхода происходит снижение пускового тока, аналогично пуску по методу «звезда-треугольник». При пуске электродвигатель получает сначала пониженное напряжение, а затем полное.

При переключении обмотки трансформатора подключены как дроссельные катушки. Это означает, что электродвигатель все время остается связанным с сетью и частота его вращения не снижается. Потребление электроэнергии при пуске показано на схеме (рис. 3). Пусковые трансформаторы относительно дороги, но очень надежны. Естественно, пусковой ток определяется характеристиками электродвигателя и насоса и в зависимости от их типоразмеров может значительно колебаться.

Плавный пуск электродвигателя (SS)

Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления. Электронный прибор содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры и силовой блок с симметричным триодным тиристором. Пусковой ток ограничен, как правило, величиной, в дватри раза превышающей рабочий ток.

При сохранении прочих параметров выключение электродвигателя по этому методу также обеспечивает уменьшение начального пускового момента. Наличие инерции в процессе пуска может привести к значительному теплообразованию в электродвигателе и тем самым к снижению его срока службы. Однако эта проблема при коротком времени ускорения/замедления, например, в течение 3 с, не имеет практического значения.

Это утверждение относится также к пуску электродвигателей по методам SD (включение через «звезду-треугольник») и AF (включение через пусковой трансформатор). Таким образом, при эксплуатации скважинных насосов Grundfos рекомендуется соблюдать для плавного пуска приведенное на графике (рис. 4) время ускорения/замедления. В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 55 %.

Однако при нормальных условиях эксплуатации этого не требуется. При плавном пуске электродвигателя его выключатель обеспечивает подачу тока несинусоидальной формы и в определенной мере создает высшие гармоники. В связи с очень коротким временем ускорения/замедления с практической точки зрения (и в нормах, касающихся высших гармоник) это не находит большого применения.

В целом, выключатель плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме DОL. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска. В том случае, если плавный пуск электродвигателей производится через обходной контактор, они могут работать с системой тепловой защиты (Теmрсоn).

Пуск посредством преобразователя частоты (FC)

Пуск электродвигателя посредством преобразователя частоты представляет собой идеальный вариант с точки зрения уменьшения пускового тока, а также импульса давления. Схема такого пуска показана на рис. 5. Преимущество этого метода в том, что пусковой ток все время удерживают на уровне номинального тока электродвигателя. Это означает, что число требуемых в течение часа включений и отключений может быть установлено любым.

В ряде моделей, например, в насосах SQ и SQE функция плавного пуска и останова за счет частотных преобразователей является встроенной, что облегчает монтаж и эксплуатацию.

Некоторые особенности применения устройств плавного пуска и защиты для скважинных насосов

Из всех описанных способов пуск электродвигателя посредством преобразователя частоты является наиболее дорогим. Поэтому его используют лишь в том случае, если в течение какого-либо интервала времени необходимо бесступенчатое регулирование мощности электродвигателя. Например, при переменном водопотреблении, когда изменением частоты можно добиться поддержания постоянного давления на выходе из насоса и экономии электроэнергии.

Кроме того, в ряде случаев существуют определенные ограничения на применение преобразователей частоты. Так, исполнение всех скважинных насосов Grundfos серии SP-A и SP допускает их эксплуатацию с преобразователем частоты при условии соблюдения следующих параметров: минимальная частота должна составлять 30 Гц, максимальная — 60 Гц (в зависимости от мощности электродвигателя).

При этом электродвигатель нужно выбирать по возможности на один типоразмер больше или предусмотреть использование электродвигателя общепромышленного назначения с меньшей тепловой нагрузкой. Кроме того, требуется обеспечить достаточное охлаждение насоса (за счет специального кожуха). Следует обеспечить пропорциональное изменение напряжения и частоты (U/f = const) и отрегулировать частотный преобразователь по номинальному току выбранного погружного электродвигателя.

Необходимо также иметь в виду, что термореле Tempcon, установленное в обмотках двигателей MS4000 и MS6000 насосов SP, не будет работать корректно при использовании частотного преобразователя. Чтобы контролировать температуру двигателя, рекомендуется дополнительно устанавливать термодатчики Pt100. В качестве устройства защиты электродвигателей насосов SP желательно применять модуль MP 204, который может использоваться как отдельно, так и в составе шкафа управления Control MP 204.

Это устройство позволяет осуществлять защиту и контроль электродвигателя по таким важным параметрам, как повышенное и пониженное напряжение, перегрузка и недогрузка по току, сопротивление изоляции, температура двигателя, чередование фаз, пропадание фазы, cos(f), энергопотребление, гармонические искажения, число пусков и наработка моточасов. Но необходимо учесть, что MP 204 не может применяться вместе с частотным преобразователем.

Исходя из приведенных данных, очевидно, что выбор системы пуска, в конечном итоге, обусловлен конкретными условиями, такими как мощность насоса, необходимость регулировать производительность насоса в течение его работы. При этом, в общем случае, для достаточно мощных устройств (более 45 кВт) оптимальным способом по затратам и результативности является плавный пуск.

Использование же таких систем позволяет свести к минимуму возможность повреждения трубопроводов и оборудования гидроударом, защищает электрическую сеть от пиковых нагрузок и дает возможность оптимизировать эксплуатационные затраты.

  • Устройства защиты насоса с плавным пуском
  • Электронные блоки управления и защиты насосов
  • Безыскровые реле давления воды
  • Реле давления для полива
  • Реле контроля уровня
  • Реле защиты по давлению
  • Стабилизаторы давления воды
  • Устройство плавного пуска электроинструмента (УПП-И)
  • Погружные насосы с плавным пуском и защитой от сухого хода
  • Фитинги и комплектующие
  • Есть множество причин для включения бытовых насосов через устройство плавного пуска.

    Обычно погружной или поверхностный насос подключают через электромеханическое или электронное реле, блок автоматики или магнитный пускатель. Во всех перечисленных случаях сетевое напряжение подаётся на насос путем замыкания контактов, то есть через прямое подключение. Это означает, что на обмотки статора электродвигателя мы подаём полное сетевое напряжение, а ротор в это время ещё не вращается. Это приводит к появлению мгновенного мощного вращательного момента на роторе электродвигателя насоса.

    Такая схема подключения характеризуется следующими явлениями при запуске насоса:

      Скачки тока через статор (соответственно, и через подводящие провода), так как ротор короткозамкнутый.
      В упрощённом понимании мы имеем короткое замыкание на вторичной обмотке трансформатора. По нашему опыту, в зависимости от насоса, производителя и нагрузки на валу, импульсный пусковой ток может превышать рабочий ток от 4 до 8, а на отдельных экземплярах и до 12 раз.

      Резкое появление вращающего момента на валу.
      Это оказывает негативное воздействие на пусковую и рабочую обмотки статора, подшипники, керамические и резиновые уплотнители, существенно увеличивая их износ и уменьшая ресурс службы.

      Появление резкого вращающего момента на валу приводит к резкому повороту корпуса скважинного насоса относительно трубопроводной системы.
      Мы неоднократно бывали свидетелями того, как из-за этого скважинный насос отсоединялся от трубопроводов и падал в скважину. В случае насосной станции на базе поверхностного насоса, установленного на платформу гидроаккумулятора, это приводит к разбалтыванию крепёжных гаек и разрушению сварных точек и швов гидроаккумулятора. Также при прямом включении насоса сокращается срок службы водопроводной и запорной арматуры, особенно в местах их соединения.

      Принято считать, что гидроаккумулятор убирает гидроудары в системе водоснабжения.
      Это действительно так, но гидроудары исчезают в трубопроводах только начиная от места подключения гидроаккумулятора. В промежутке между насосом и гидроаккумулятором при прямом подключении насоса гидроудар остаётся. В итоге на промежутке от насоса до гидроаккумулятора мы имеем все последствия гидроудара на все части насоса и на трубопроводную систему.

      В системах фильтрации воды гидроудары, возникающие при прямом подключении насоса, значительно сокращают срок службы фильтрующих элементов.

      Если локальная электросеть слабая , то о запуске насоса мощностью более 1кВт при прямом подключении узнают и Ваши соседи по резкому спаду напряжения в сети в момент включения насоса.
      Если локальная сеть КРАЙНЕ СЛАБА , и Ваш сосед тоже получает удовольствие от жизни, подключив к сети все доступные электрические приборы, то скважинный насос, погружённый на большую глубину, может и не запуститься. Такой скачок напряжения может вывести из строя электронные приборы, подключённые в сеть. Известны случаи, когда при запуске насоса выходил из строя напичканный электроникой дорогостоящий холодильник.

      Чем чаще включается насос, тем меньше его ресурс службы.
      Частые запуски через прямое подключение приводят к выходу из строя пластмассовых муфт скважинных насосов, соединяющих электродвигатель с насосной частью.

    Мы с Вами прошлись по проблемам, которые возникают при запуске насоса без устройства плавного пуска (УПП) .

    Необходимо отметить, что и при выключении насоса без УПП с прямой схемой подключенияесть негативные моменты:

      При выключении насоса также происходит гидроудар в системе, но теперь уже по причине резкого снижения вращающего момента на валу насоса, что равносильно созданию мгновенного разряжения.

      Резкое снижение вращающего момента на валу насоса также приводит к повороту корпуса насоса, но в противоположную сторону.
      Вспомним о трубопроводах и резьбовых соединениях насоса.

      В обычных бытовых насосах электродвигатели являются асинхронными и имеют явно выраженный индуктивный характер.
      Если мы резко прерываем подачу тока через индуктивную нагрузку, то происходит резкий скачок напряжения на этой нагрузке по причине непрерывности тока. Да, мы размыкаем контакт, и всё высокое напряжение должно остаться на стороне насоса. Но при любом механическом размыкании контакта присутствует так называемый «дребезг контактов», и импульсы высокого напряжения попадают в сеть, а значит попадают и в приборы, подключенные в это время к сети.

    Таким образом, при прямом подключении насоса происходит повышенный износ механических и электрических частей насоса (как при запуске, так и при отключении). Также страдают приборы, включенную в эту же сеть, и уменьшается ресурс работы систем фильтрации и водопроводной арматуры.

    Использование устройства плавного пуска («Акваконтроль УПП-2,2С») позволяет сгладить большинство описанных выше недостатков. В устройстве УПП-2,2С реализована специально рассчитанная кривая нарастания напряжения на насосе, позволяющая с одной стороны гарантированно запустить насос в самых неблагоприятных условиях эксплуатации, а с другой стороны плавно увеличить частоту вращения вала. Также в этот прибор встроена защита от низкого и высокого напряжения сети, чтобы оградить насос от экстремальных режимов работы и включения.

    В УПП-2,2С используется фазное симисторное управление. В момент пуска на насос подается часть сетевого напряжения, которое создает вращающий момент, достаточный для гарантированного запуска насоса. По мере раскрутки ротора плавно увеличивается напряжение на насосе до момента полной подачи напряжения. После этого включается реле и отключается симистор. В итоге, при использовании УПП-2,2С насос подключён к сети через контакты реле, то есть так же, как и при прямом подключении. Но в течение 3,2 секунд (это время плавного пуска) напряжение на насос подаётся через симистор, что обеспечивает «мягкий пуск», без искр на контактах реле.

    При таком запуске максимальный пусковой ток превышает рабочий не более чем в 2,0-2,5 раза вместо 5-8 раз. Используя УПП-2,2С , мы в 2,5-3 раза уменьшаем пусковые нагрузки на насос и во столько же раз продлеваем жизнь насосу, обеспечиваем более комфортную работу приборов, подключённых к электрической сети. УПП-2,2С можно назвать устройством с ресурсосберегающей технологией.

    Серии ES024 компания «Эффективные Системы» производит станции управления , способные объединять в единую систему до 7 насосов номинальной мощностью от 1,5 до 315 кВт, номинальным напряжением 380 В. По техническому заданию заказчика возможно изготовление станций управления иных номинальных мощностей и напряжений.

    В зависимости от потребности заказчика в станциях управления насосами производства компании «Эффективные Системы» могут быть реализованы следующие функции:

    1. Настройка до 8 различных заданных уровней давления, которые необходимо поддерживать, распределенных по времени суток;
    2. Возможность перехода системы в «спящий режим» при отсутствии водоразбора или при малом водоразборе, что позволяет существенно снизить энергопотребление;
    3. Периодическая смена насосов, позволяющая обеспечить их равномерный износ и избежать ржавления резервных насосов;
    4. Управление дренажными насосами, позволяющее контролировать уровень сточных вод;
    5. Определение уровня жидкости и управление наполнением резервуара, позволяющие запускать насос в зависимости от количества жидкости в резервуаре и восполнять ее расход с заданным уровнем подачи;
    6. Сигнализация о повышенном и пониженном давлении в трубопроводе;
    7. Занесение в память токовых параметров до 7 двигателей насосов для обеспечения токовой защиты и защиты от перегрузки любого насоса, работающего в каждый конкретный момент времени;
    8. Диагностика неисправностей, позволяющая автоматически выявлять и исключать из алгоритма работы системы неисправные насосы.

    Для получения технико-коммерческого предложения свяжитесь с нами одним из указанных вверху и внизу данной страницы способом.

    КРАТКАЯ СПРАВКА: ПЛАВНЫЙ ПУСК НАСОСОВ

    На практике пусковой ток электродвигателей насосов в 3-5 и более раз превосходит номинальный ток. Это в конечном счете приводит к увеличенному тепловому износу изоляции обмоток статора (из-за этого в значительной степени снижается долговечность работы и надежность электродвигателя насоса). Помимо этого, если мощность питающей сети недостаточна, возможно краткосрочное падение напряжения, а это уже может негативно влиять на работу другого электрооборудования, запитанного от той же сети.

    Прямой пуск насоса вреден и для агрегата и для скважины в целом, так как сопровождается гидроударами, которые разрушают запорную арматуру, трубопровод и сам насос. При прямом запуске скважинного насоса может наблюдаться сильный приток воды из водного пласта и это приводит к разрушению фильтровальной зоны, а, следовательно, к попаданию песка в скважину.

    Единственным эффективным решением данных проблем является реализация плавного пуска насоса , для чего разработан целый ряд технических средств, в том числе устройства плавного пуска и преобразователи частоты.

    Задача устройств плавного пуска — обеспечить защиту насосных агрегатов от высокого пускового тока, механических перегрузок, гидроударов, т.е. обеспечить долговечность и надежную эксплуатацию оборудования. Наряду с решением задачи плавного пуска применение преобразователей частоты при работе насосов позволяет согласовать производительность насоса с расходом перекачиваемой жидкости в каждый момент времени, что позволяет значительно снизить энергопотребление системы.

    Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения , автотрансформатора и т. д.

    В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

    Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

    Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

    Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

    1. снижение стартового тока;
    2. уменьшение затрат на электроэнергию;
    3. повышение эффективности;
    4. сравнительно низкая стоимость;
    5. достижение максимальной скорости без ущерба для агрегата.

    Как плавно запустить двигатель?

    Существует пять основных методов плавного пуска.

    • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

    • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

    • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
    • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

    • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

    Регулятор оборотов коллекторного двигателя

    Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

    Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

    Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

    О том, как классно иметь дома скважину знают все. Это удобно и эффективно, пока ничего не сломается. А проблемы рано или поздно дадут о себе знать, и по закону подлости, в самый неподходящий момент. Отказываться от скважины и копать колодец — не вариант. Лучше предотвратить возможные аварии и защититься от них заранее.

    Какой вариант водоснабжения лучше для частного дома

    Вода со скважины поднимается специальным глубинным насосом. В зависимости от конструкции водоснабжения, она закачивается в специальный резервуар — гидроаккумулятор или подается прямо в водопровод.

    Система с резервуаром больше подходит для частного дома. Например, для семьи из 3-4 человек в среднем хватает 70 л на день. Для такого водоснабжения понадобится: 50-литровый гидроаккумулятор на соответствующий объем, реле давления и насос со скоростью перекачивания 1 м3/ч. Все вместе будет стоить 100$.

    Но, для отеля на 12 номеров такой вариант — нерентабельный, потому что понадобится резервуар размером как целый номер. 500-литровый гидроаккумулятор обойдется в 400$ и будет занимать много полезного пространства. Дешевле и эффективнее купить частотный преобразователь за 150-200$.

    Водоснабжение с частотным преобразователем

    Частотник регулирует обороты электромотора в зависимости от давления в водопроводе. Это работает по такому принципу :

    1. На водопроводную трубу ставится реле давления, подключенное к частотному преобразователю;
    2. Система включается в сеть и частотник плавно меняет характеристики тока насоса;
    3. За счет этого он постепенно выходит на номинальные обороты;
    4. При заполнении в трубах растет давление, и реле подает сигнал на частотник, уменьшающий скорость подкачки.

    Какие преимущества такой системы?

    Удобство для пользователя

    Например, когда посетитель в отельном номере принимает душ, давление в водопроводе падает, и насос работает быстрее. Когда кран закручен, электромотор работает на малых оборотах, чтобы вода не стекала с труб. Так, если Вы открутите кран, она мгновенно начнет течь под нужным напором.

    Безопасность электросети

    При включении каждый электродвигатель потребляет в 3-4 раза больше электричества — возникает пусковой ток. В этот момент сетевая нагрузка составляет соответственно 300-400% от номинальной. Пик держится доли секунды, пока электромотор не выйдет на нормальные обороты. Чем это опасно?

    Вернемся к нашему отелю. Чтобы перебои с электроэнергией не оставили посетителей без благ цивилизации, любой ответственный хозяин установит генератор. Предположим, что мощность резервного источника будет 20 кВт, из которых 10 кВт сразу уйдет на освещение, кондиционеры, розетки с ноутбуками и т.д.

    Мощность насоса — 5 кВт, но так как его пусковой ток равен 3 номинальным, на старте он возьмет все 15 кВт. Генератор может предоставить только 10 кВт, но электродвигателю этого будет мало. Такая нагрузка выведет генератор из строя, и в результате отель останется без света и воды .

    Частотный преобразователь снимает пусковой ток . Если бы в предыдущем примере был частотник, нагрузка на генератор не превысила бы 15 кВт и он бы работал в безопасном режиме.

    Длительный срок службы насоса

    Пусковой ток вредит не только сети, но и электромотору. Каждый раз при включении он работает в нештатном режиме и кратковременно выдерживает нагрузку, на которую не рассчитан. Резкие пуски и остановки увеличивают износ электромотора. Частотный преобразователь делает плавную остановку, чем увеличивает срок эксплуатации в два раза .

    Что будет, если не защитить систему подачи воды?

    Чтобы водоснабжение дома было бесперебойным и эффективным, ему все же нужна защита. Бесспорно, насос — главный элемент в системе, но каким бы дорогим и качественным он не был, его ничего не спасет от короткого замыкания.

    Аварии случаются не только под водой, но и в погружном кабеле и даже сети дома. Сложно предугадать, что сломается первым. Чтобы не играть в лотерею, лучше защититесь от всего и сразу.

     

     

    Это интересно: